Hình 20 mô tả mặt cắt ngang tầng trệt của một ngôi nhà. Biết AB ⊥ BC, CD ⊥ BC và AB = 4 m, CD = 7 m, AD = 11 m. Tính độ dài BC (làm tròn kết quả đến hàng phần mười của mét).
Hình 20 mô tả mặt cắt ngang tầng trệt của một ngôi nhà. Biết AB ⊥ BC, CD ⊥ BC và AB = 4 m, CD = 7 m, AD = 11 m. Tính độ dài BC (làm tròn kết quả đến hàng phần mười của mét).

Câu hỏi trong đề: Giải SBT Toán 8 Cánh Diều Hình chữ nhật có đáp án !!
Quảng cáo
Trả lời:

Kẻ AH vuông góc với CD tại H. Suy ra \(\widehat {AHC} = 90^\circ \).

Ta có AB ⊥ BC, CD ⊥ BC nên \(\widehat {ABC} = \widehat {BCH} = 90^\circ \)
Tứ giác ABCH có \(\widehat {ABC} = \widehat {BCH} = \widehat {AHC} = 90^\circ \) nên ABCD là hình chữ nhật.
Suy ra CH = AB = 4 cm.
Ta có: CH + HD = CD
Do đó DH = CD ‒ CH = 7 ‒ 4 = 3 cm.
Áp dụng định lý Pythagore cho tam giác \(ADH\) vuông tại \(H\), ta có: AD2 = AH2 + DH2
Suy ra AH2 = AD2 ‒ DH2 = 112 ‒ 32 = 121 – 9 = 112
Do đó \(AH = \sqrt {112} {\rm{\;m}}\).
Mà BC = AH (vì ABCH là hình chữ nhật) nên \(BC = \sqrt {112} \approx 10,6\)(m).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi I là giao điểm của AM và EF.
Do ABCD và AEMF đều là hình chữ nhật nên OA = OB và IA = IE (2 đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường).
Suy ra tam giác OAB cân tại O và tam giác IAE cân tại I.
Do đó \(\widehat {OBA} = \widehat {OAB}\) và \(\widehat {IEA} = \widehat {IAE}\) hay \(\widehat {OBA} = \widehat {IEA}\).
Mà \(\widehat {OBA}\) và \(\widehat {IEA}\) nằm ở vị trí đồng vị, suy ra BD // EF.
Lời giải

Do GD = GB, GE = GC nên G là trung điểm của BD và CE.
Tứ giác BEDC có hai đường chéo BD và CE cắt nhau tại trung điểm G của mỗi đường nên BEDC là hình bình hành.
BM, CN là các đường trung tuyến của ∆ABC nên M là trung điểm của AC, N là trung điểm của AB
Suy ra AM = CM, AN = BN
Lại có AB = AC (do ∆ABC cân tại A) nên BN = CM
Xét ∆BCM và ∆CBN có:
CM = BN (chứng minh trên), \[\widehat {ABC} = \widehat {ACB}\], cạnh BC chung
Do đó ∆BCM = ∆CBN (c.g.c). Suy ra BM = CN (hai cạnh tương ứng)
Do G là trọng tâm của tam giác ABC nên \(BG = \frac{2}{3}BM\) và \(CG = \frac{2}{3}CN\).
Do đó BG = CG.
Mà G là trung điểm của BD và CE, suy ra BD = CE.
Hình bình hành BEDC có BD = CE nên BEDC là hình chữ nhật.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.