Câu hỏi:
13/07/2024 7,712
Cho hình chữ nhật ABCD có hai đường chéo AC và BD cắt nhau tại O. Lấy điểm M thuộc đoạn thẳng OC. Gọi E, F lần lượt là hình chiếu của điểm M trên đường thẳng AB, AD. Chứng minh:
BD // EF.
Cho hình chữ nhật ABCD có hai đường chéo AC và BD cắt nhau tại O. Lấy điểm M thuộc đoạn thẳng OC. Gọi E, F lần lượt là hình chiếu của điểm M trên đường thẳng AB, AD. Chứng minh:
BD // EF.
Câu hỏi trong đề: Giải SBT Toán 8 Cánh Diều Hình chữ nhật có đáp án !!
Quảng cáo
Trả lời:

Gọi I là giao điểm của AM và EF.
Do ABCD và AEMF đều là hình chữ nhật nên OA = OB và IA = IE (2 đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường).
Suy ra tam giác OAB cân tại O và tam giác IAE cân tại I.
Do đó \(\widehat {OBA} = \widehat {OAB}\) và \(\widehat {IEA} = \widehat {IAE}\) hay \(\widehat {OBA} = \widehat {IEA}\).
Mà \(\widehat {OBA}\) và \(\widehat {IEA}\) nằm ở vị trí đồng vị, suy ra BD // EF.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Do ADME là hình chữ nhật nên hai đường chéo DE và AM cắt nhau tại trung điểm của mỗi đường.
Mà I là trung điểm của DE, suy ra I là trung điểm của AM.
Vậy ba điểm A, I, M thẳng hàng.
Lời giải

Do GD = GB, GE = GC nên G là trung điểm của BD và CE.
Tứ giác BEDC có hai đường chéo BD và CE cắt nhau tại trung điểm G của mỗi đường nên BEDC là hình bình hành.
BM, CN là các đường trung tuyến của ∆ABC nên M là trung điểm của AC, N là trung điểm của AB
Suy ra AM = CM, AN = BN
Lại có AB = AC (do ∆ABC cân tại A) nên BN = CM
Xét ∆BCM và ∆CBN có:
CM = BN (chứng minh trên), \[\widehat {ABC} = \widehat {ACB}\], cạnh BC chung
Do đó ∆BCM = ∆CBN (c.g.c). Suy ra BM = CN (hai cạnh tương ứng)
Do G là trọng tâm của tam giác ABC nên \(BG = \frac{2}{3}BM\) và \(CG = \frac{2}{3}CN\).
Do đó BG = CG.
Mà G là trung điểm của BD và CE, suy ra BD = CE.
Hình bình hành BEDC có BD = CE nên BEDC là hình chữ nhật.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.