Câu hỏi:

13/07/2024 2,819 Lưu

Cho tam giác ABC vuông cân tại A. Lấy điểm M thuộc cạnh huyền BC. Gọi D, E lần lượt là hình chiếu của điểm M trên đường thẳng AB, AC.

Điểm M ở vị trí nào trên cạnh BC thì DE có độ dài nhỏ nhất? Tính độ dài nhỏ nhất đó, biết AB = 2 cm.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Do ADME là hình chữ nhật nên AM = DE.

Suy ra DE có độ dài nhỏ nhất khi AM có độ dài nhỏ nhất.

Vậy M là hình chiếu của A trên đường thẳng BC.
Điểm M ở vị trí nào trên cạnh BC thì DE có độ dài nhỏ nhất Tính độ dài nhỏ nhất đó (ảnh 1) 

Trong tam giác ABC vuông cân tại A, ta có:

AC = AB = 2 cm và BC2 = AB2 + AC2 = 22 + 22 = 8 (định lý Pythagore)

Suy ra \[BC = \sqrt 8 {\rm{\;cm}}\].

Xét ∆ABM vuông tại M và ∆ACM vuông tại M có:

Cạnh AM chung, \(\widehat {ABM} = \widehat {ACM}\) (do ∆ABC vuông cân tại A)

Do đó ∆ABM = ∆ACM (cạnh góc vuông – góc nhọn kề).

Suy ra \(BM = CM = \frac{{BC}}{2} = \frac{{\sqrt 8 }}{2} = \sqrt 2 {\rm{\;cm}}\).

Tam giác ABM vuông tại M có \(\widehat {ABM} = 45^\circ \) nên \(\widehat {BAM} = \widehat {ABM} = 45^\circ \).

Suy ra tam giác ABM vuông cân tại M.

Do đó \(DE = AM = BM = \sqrt 2 {\rm{\;}}\left( {{\rm{cm}}} \right)\).

Vậy \(DE = \sqrt 2 {\rm{\;cm}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chữ nhật ABCD có hai đường chéo AC và BD Chứng minh BD // È (ảnh 1)

Gọi I là giao điểm của AM và EF.

Do ABCD và AEMF đều là hình chữ nhật nên OA = OB và IA = IE (2 đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường).

Suy ra tam giác OAB cân tại O và tam giác IAE cân tại I.

Do đó \(\widehat {OBA} = \widehat {OAB}\)\(\widehat {IEA} = \widehat {IAE}\) hay \(\widehat {OBA} = \widehat {IEA}\).

\(\widehat {OBA}\)\(\widehat {IEA}\) nằm ở vị trí đồng vị, suy ra BD // EF.

Lời giải

Cho tam giác ABC cân tại A có các đường trung tuyến BM, CN cắt nhau tại G. Trên tia đối  (ảnh 1)

Do GD = GB, GE = GC nên G là trung điểm của BD và CE.

Tứ giác BEDC có hai đường chéo BD và CE cắt nhau tại trung điểm G của mỗi đường nên BEDC là hình bình hành.

BM, CN là các đường trung tuyến của ∆ABC nên M là trung điểm của AC, N là trung điểm của AB

Suy ra AM = CM, AN = BN

Lại có AB = AC (do ∆ABC cân tại A) nên BN = CM

Xét ∆BCM và ∆CBN có:

CM = BN (chứng minh trên), \[\widehat {ABC} = \widehat {ACB}\], cạnh BC chung

Do đó ∆BCM = ∆CBN (c.g.c). Suy ra BM = CN (hai cạnh tương ứng)

Do G là trọng tâm của tam giác ABC nên \(BG = \frac{2}{3}BM\)\(CG = \frac{2}{3}CN\).

Do đó BG = CG.

Mà G là trung điểm của BD và CE, suy ra BD = CE.

Hình bình hành BEDC có BD = CE nên BEDC là hình chữ nhật.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP