Câu hỏi:
13/07/2024 2,413Cho tam giác ABC vuông cân tại A. Lấy điểm M thuộc cạnh huyền BC. Gọi D, E lần lượt là hình chiếu của điểm M trên đường thẳng AB, AC.
Điểm M ở vị trí nào trên cạnh BC thì DE có độ dài nhỏ nhất? Tính độ dài nhỏ nhất đó, biết AB = 2 cm.
Câu hỏi trong đề: Giải SBT Toán 8 Cánh Diều Hình chữ nhật có đáp án !!
Bắt đầu thiQuảng cáo
Trả lời:
Do ADME là hình chữ nhật nên AM = DE.
Suy ra DE có độ dài nhỏ nhất khi AM có độ dài nhỏ nhất.
Vậy M là hình chiếu của A trên đường thẳng BC.Trong tam giác ABC vuông cân tại A, ta có:
AC = AB = 2 cm và BC2 = AB2 + AC2 = 22 + 22 = 8 (định lý Pythagore)
Suy ra \[BC = \sqrt 8 {\rm{\;cm}}\].
Xét ∆ABM vuông tại M và ∆ACM vuông tại M có:
Cạnh AM chung, \(\widehat {ABM} = \widehat {ACM}\) (do ∆ABC vuông cân tại A)
Do đó ∆ABM = ∆ACM (cạnh góc vuông – góc nhọn kề).
Suy ra \(BM = CM = \frac{{BC}}{2} = \frac{{\sqrt 8 }}{2} = \sqrt 2 {\rm{\;cm}}\).
Tam giác ABM vuông tại M có \(\widehat {ABM} = 45^\circ \) nên \(\widehat {BAM} = \widehat {ABM} = 45^\circ \).
Suy ra tam giác ABM vuông cân tại M.
Do đó \(DE = AM = BM = \sqrt 2 {\rm{\;}}\left( {{\rm{cm}}} \right)\).
Vậy \(DE = \sqrt 2 {\rm{\;cm}}\).
Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chữ nhật ABCD có hai đường chéo AC và BD cắt nhau tại O. Lấy điểm M thuộc đoạn thẳng OC. Gọi E, F lần lượt là hình chiếu của điểm M trên đường thẳng AB, AD. Chứng minh:
BD // EF.
Câu 2:
Cho tam giác ABC cân tại A có các đường trung tuyến BM, CN cắt nhau tại G. Trên tia đối của tia GB, GC lần lượt lấy các điểm D, E sao cho GD = GB, GE = GC. Tứ giác BEDC là hình gì? Vì sao?
Câu 3:
Cho tam giác ABC vuông cân tại A. Lấy điểm M thuộc cạnh huyền BC. Gọi D, E lần lượt là hình chiếu của điểm M trên đường thẳng AB, AC.
Gọi I là trung điểm của DE. Chứng minh ba điểm A, I, M thẳng hàng.
Câu 4:
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Hình thang có hai góc vuông là hình chữ nhật.
b) Hình thang cân có một góc vuông là hình chữ nhật.
c) Hình bình hành có một góc vuông là hình chữ nhật.
d) Tứ giác có hai góc vuông là hình chữ nhật.
Câu 5:
Cho tam giác ABC vuông cân tại A. Lấy điểm M thuộc cạnh huyền BC. Gọi D, E lần lượt là hình chiếu của điểm M trên đường thẳng AB, AC.
Chứng minh khi điểm M thay đổi vị trí trên cạnh BC thì chu vi của tứ giác ADME không đổi.
Câu 6:
Hình 20 mô tả mặt cắt ngang tầng trệt của một ngôi nhà. Biết AB ⊥ BC, CD ⊥ BC và AB = 4 m, CD = 7 m, AD = 11 m. Tính độ dài BC (làm tròn kết quả đến hàng phần mười của mét).
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 1)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
10 Bài tập Nhận biết hai hình đồng dạng, hai hình đồng dạng phối cảnh (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận