Câu hỏi:

13/07/2024 7,489 Lưu

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}2x + a\,\,\,\,\,\,khi\,\,x < 2\\4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 2\\ - 3x + b\,\,\,khi\,x > 2\end{array} \right.\).

a) Với a = 0, b = 1, xét tính liên tục của hàm số tại x = 2.

b) Với giá trị nào của a, b thì hàm số liên tục tại x = 2?

c) Với giá trị nào của a, b thì hàm số liên tục trên tập xác định?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

a) Với a = 0, b = 1, hàm số \(f\left( x \right) = \left\{ \begin{array}{l}2x\,\,\,\,\,\,khi\,\,x < 2\\4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 2\\ - 3x + 1\,\,\,khi\,x > 2\end{array} \right.\)

Với x < 2 thì f(x) = 2x là hàm liên tục.

Với x > 2 thì f(x) = – 3x + 1 là hàm liên tục.

Tại x = 2 ta có: \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} 2x = 4\), \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - 3x + 1} \right) = - 5\).

Suy ra \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right)\). Do đó không tồn tại \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\).

Vậy hàm số tiên tục trên ( – ∞; 2) và (2; +∞).

b) Ta có: \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {2x + a} \right) = 4 + a\), \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - 3x + b} \right) = - 6 + b\)

Để hàm số liên tục tại x = 2 thì \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = f\left( 2 \right) \Leftrightarrow \left\{ \begin{array}{l}4 + a = 4\\ - 6 + b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 0\\b = 10\end{array} \right.\) .

Vậy với a = 0 và b = 10 thì hàm số liên tục tại x = 2.

c) Tập xác định của hàm số là: ℝ.

Để hàm số liên tục trên ℝ thì hàm số liên tục tại x = 2. Vì vậy với a = 0 và b = 10 thỏa mãn điều kiện.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a)

+) (pn) là dãy số chu vi của các tam giác theo thứ tự ABC, A1B1C1, ...

Ta có: p1 = p∆ABC = a + a + a = 3a; p2 = \({p_{\Delta {A_1}{B_1}{C_1}}} = \frac{a}{2} + \frac{a}{2} + \frac{a}{2} = \frac{1}{2}.\left( {3a} \right) = \frac{1}{2}.{p_1}\); p3 = \({p_{\Delta {A_2}{B_2}{C_2}}} = \frac{a}{4} + \frac{a}{4} + \frac{a}{4} = {\left( {\frac{1}{2}} \right)^2}.\left( {3a} \right) = {\left( {\frac{1}{2}} \right)^2}.{p_1}\); ...; \({p_{\Delta {A_n}{B_n}{C_n}}} = {\left( {\frac{1}{2}} \right)^{n - 1}}.{p_1}\); ...

Suy ra \(\mathop {\lim }\limits_{n \to \infty } {p_n} = \mathop {\lim }\limits_{n \to \infty } \left[ {{{\left( {\frac{1}{2}} \right)}^{n - 1}}.\left( {3a} \right)} \right] = \mathop {\lim }\limits_{n \to \infty } {\left( {\frac{1}{2}} \right)^{n - 1}}.\mathop {\lim }\limits_{n \to \infty } \left( {3a} \right) = 0.3a = 0\).

+) (Sn) là dãy số chu vi của các tam giác theo thứ tự ABC, A1B1C1, ...

Gọi h là chiều cao của tam giác ABC và h = \(\frac{{a\sqrt 3 }}{2}\).

Ta có: S1 = S∆ABC = \(\frac{1}{2}ah\); S2 = \({S_{\Delta {A_1}{B_1}{C_1}}} = \frac{1}{2}.\frac{a}{2}.\frac{h}{2} = \frac{1}{4}.\left( {\frac{1}{2}ah} \right) = \frac{1}{4}.{S_1}\); S3 = \({S_{\Delta {A_2}{B_2}{C_2}}} = \frac{1}{2}.\frac{a}{4}.\frac{h}{4} = {\left( {\frac{1}{4}} \right)^2}.\left( {\frac{1}{2}ah} \right) = {\left( {\frac{1}{4}} \right)^2}.{S_1}\); ...; \({S_{\Delta {A_n}{B_n}{C_n}}} = {\left( {\frac{1}{2}} \right)^{n - 1}}.{S_1}\); ...

Suy ra \(\mathop {\lim }\limits_{n \to \infty } {S_n} = \mathop {\lim }\limits_{n \to \infty } \left[ {{{\left( {\frac{1}{4}} \right)}^{n - 1}}.{S_1}} \right] = \mathop {\lim }\limits_{n \to \infty } {\left( {\frac{1}{4}} \right)^{n - 1}}.\mathop {\lim }\limits_{n \to \infty } \left( {\frac{1}{2}ah} \right) = 0.\frac{1}{2}ah = 0\).

b) +) Ta có (pn) là một cấp số nhân lùi vô hạn với số hạng đầu p1 = 3a và công bội q = \(\frac{1}{2}\) thỏa mãn |q| < 1 có tổng:

\({P_n} = {p_1} + {p_2} + ... + {p_n} + ... = \frac{{3a}}{{1 - \frac{1}{2}}} = 6a\).

+) Ta cũng có (Sn) là một cấp số nhân lùi vô hạn với số hạng đầu S1 = \(\frac{1}{2}ah\) và công bội q = \(\frac{1}{4}\) thỏa mãn |q| < 1 có tổng:

\({S_n} = {S_1} + {S_2} + ... + {S_n} + ... = \frac{{\frac{1}{2}ah}}{{1 - \frac{1}{4}}} = \frac{2}{3}ah\).

Lời giải

Lời giải

Gọi (un) là dãy số thể hiện quãng đường di chuyển của quả bóng sau mỗi lần chạm đất.

Ta có: u1 = 55,8, u2 = \(\frac{1}{{10}}\).u1; u3 = \({\left( {\frac{1}{{10}}} \right)^2}\).u1; ...; un = \({\left( {\frac{1}{{10}}} \right)^{n - 1}}\).u1.

Khi đó dãy (un) lập thành một cấp số nhân lùi vô hạn có số hạng đầu u1 = 55,8 và công bội \(q = \frac{1}{{10}}\) thỏa mãn |q| < 1.

Suy ra \({S_n} = {u_1} + {u_2} + ... + {u_n} + ... = \frac{{55,8}}{{1 - \frac{1}{{10}}}} = 62\) (m).

Vậy tổng độ dài quãng đường di chuyển của quả bóng tính từ lúc thả ban đầu cho đến khi quả bóng đó chạm đất n lần là 62 m.