Câu hỏi:
13/07/2024 1,918Một thấu kính hội tụ có tiêu cự là f. Gọi d và d’ lần lượt là khoảng cách từ một vật thật AB và từ ảnh A’B’ của nó tới quang tâm O của thấu kính như Hình 19. Công thức thấu kính \(\frac{1}{d} + \frac{1}{{d'}} = \frac{1}{f}\).
a) Tìm biểu thức xác định hàm số d’ = φ(d).
b) Tìm \(\mathop {\lim }\limits_{d \to {f^ + }} \varphi \left( d \right),\mathop {\lim }\limits_{d \to {f^ - }} \varphi \left( d \right)\) và \(\mathop {\lim }\limits_{d \to f} \varphi \left( d \right)\). Giải thích ý nghĩa của các kết quả tìm được.
Câu hỏi trong đề: Giải SGK Toán 11 CD Bài tập cuối chương III có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) Ta có: \(\frac{1}{{d'}} = \frac{1}{f} - \frac{1}{d} \Leftrightarrow \frac{1}{{d'}} = \frac{{d - f}}{{df}} \Leftrightarrow d' = \frac{{df}}{{d - f}}\).
b) Ta có: \(\mathop {\lim }\limits_{d \to {f^ + }} \varphi \left( d \right) = \mathop {\lim }\limits_{d \to {f^ + }} \frac{{df}}{{d - f}} = + \infty ;\mathop {\lim }\limits_{d \to {f^ - }} \varphi \left( d \right) = \mathop {\lim }\limits_{d \to {f^ - }} \frac{{df}}{{d - f}} = - \infty \); \(\mathop {\lim }\limits_{d \to f} \varphi \left( d \right) = \mathop {\lim }\limits_{d \to f} \frac{{df}}{{d - f}} = \infty \).
Giải thích ý nghĩa: Khi khoảng cách của vật tới thấu kính mà gần với tiêu cự thì khoảng cách ảnh của vật đến thấu kính ra xa vô tận nên lúc đó bằng mắt thường mình không nhìn thấy.Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Gọi (un) là dãy số thể hiện quãng đường di chuyển của quả bóng sau mỗi lần chạm đất.
Ta có: u1 = 55,8, u2 = \(\frac{1}{{10}}\).u1; u3 = \({\left( {\frac{1}{{10}}} \right)^2}\).u1; ...; un = \({\left( {\frac{1}{{10}}} \right)^{n - 1}}\).u1.
Khi đó dãy (un) lập thành một cấp số nhân lùi vô hạn có số hạng đầu u1 = 55,8 và công bội \(q = \frac{1}{{10}}\) thỏa mãn |q| < 1.
Suy ra \({S_n} = {u_1} + {u_2} + ... + {u_n} + ... = \frac{{55,8}}{{1 - \frac{1}{{10}}}} = 62\) (m).
Vậy tổng độ dài quãng đường di chuyển của quả bóng tính từ lúc thả ban đầu cho đến khi quả bóng đó chạm đất n lần là 62 m.
Lời giải
Lời giải
a)
+) (pn) là dãy số chu vi của các tam giác theo thứ tự ABC, A1B1C1, ...
Ta có: p1 = p∆ABC = a + a + a = 3a; p2 = \({p_{\Delta {A_1}{B_1}{C_1}}} = \frac{a}{2} + \frac{a}{2} + \frac{a}{2} = \frac{1}{2}.\left( {3a} \right) = \frac{1}{2}.{p_1}\); p3 = \({p_{\Delta {A_2}{B_2}{C_2}}} = \frac{a}{4} + \frac{a}{4} + \frac{a}{4} = {\left( {\frac{1}{2}} \right)^2}.\left( {3a} \right) = {\left( {\frac{1}{2}} \right)^2}.{p_1}\); ...; \({p_{\Delta {A_n}{B_n}{C_n}}} = {\left( {\frac{1}{2}} \right)^{n - 1}}.{p_1}\); ...
Suy ra \(\mathop {\lim }\limits_{n \to \infty } {p_n} = \mathop {\lim }\limits_{n \to \infty } \left[ {{{\left( {\frac{1}{2}} \right)}^{n - 1}}.\left( {3a} \right)} \right] = \mathop {\lim }\limits_{n \to \infty } {\left( {\frac{1}{2}} \right)^{n - 1}}.\mathop {\lim }\limits_{n \to \infty } \left( {3a} \right) = 0.3a = 0\).
+) (Sn) là dãy số chu vi của các tam giác theo thứ tự ABC, A1B1C1, ...
Gọi h là chiều cao của tam giác ABC và h = \(\frac{{a\sqrt 3 }}{2}\).
Ta có: S1 = S∆ABC = \(\frac{1}{2}ah\); S2 = \({S_{\Delta {A_1}{B_1}{C_1}}} = \frac{1}{2}.\frac{a}{2}.\frac{h}{2} = \frac{1}{4}.\left( {\frac{1}{2}ah} \right) = \frac{1}{4}.{S_1}\); S3 = \({S_{\Delta {A_2}{B_2}{C_2}}} = \frac{1}{2}.\frac{a}{4}.\frac{h}{4} = {\left( {\frac{1}{4}} \right)^2}.\left( {\frac{1}{2}ah} \right) = {\left( {\frac{1}{4}} \right)^2}.{S_1}\); ...; \({S_{\Delta {A_n}{B_n}{C_n}}} = {\left( {\frac{1}{2}} \right)^{n - 1}}.{S_1}\); ...
Suy ra \(\mathop {\lim }\limits_{n \to \infty } {S_n} = \mathop {\lim }\limits_{n \to \infty } \left[ {{{\left( {\frac{1}{4}} \right)}^{n - 1}}.{S_1}} \right] = \mathop {\lim }\limits_{n \to \infty } {\left( {\frac{1}{4}} \right)^{n - 1}}.\mathop {\lim }\limits_{n \to \infty } \left( {\frac{1}{2}ah} \right) = 0.\frac{1}{2}ah = 0\).
b) +) Ta có (pn) là một cấp số nhân lùi vô hạn với số hạng đầu p1 = 3a và công bội q = \(\frac{1}{2}\) thỏa mãn |q| < 1 có tổng:
\({P_n} = {p_1} + {p_2} + ... + {p_n} + ... = \frac{{3a}}{{1 - \frac{1}{2}}} = 6a\).
+) Ta cũng có (Sn) là một cấp số nhân lùi vô hạn với số hạng đầu S1 = \(\frac{1}{2}ah\) và công bội q = \(\frac{1}{4}\) thỏa mãn |q| < 1 có tổng:
\({S_n} = {S_1} + {S_2} + ... + {S_n} + ... = \frac{{\frac{1}{2}ah}}{{1 - \frac{1}{4}}} = \frac{2}{3}ah\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
Bài tập Tổ hợp - Xác suất cơ bản, nâng cao có lời giải chi tiết (P6)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận