Câu hỏi:
12/07/2024 3,377
Cho hình chóp S.ABCD. Gọi M, N, P, Q lần lượt là trung điểm của SA, SB, SC, SD. Tính tỉ số thể tích của khối chóp S.MNPQ và khối chóp S.ABCD.
Cho hình chóp S.ABCD. Gọi M, N, P, Q lần lượt là trung điểm của SA, SB, SC, SD. Tính tỉ số thể tích của khối chóp S.MNPQ và khối chóp S.ABCD.
Quảng cáo
Trả lời:

Ta có tỉ số: \(\frac{{{V_{S.MNP}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SA}} \cdot \frac{{SN}}{{SB}} \cdot \frac{{SP}}{{SC}} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}\)
\( \Rightarrow {V_{S.MNP}} = \frac{1}{8}{V_{S.ABC}}\)
Tương tự ta cũng có tỉ số:
\(\frac{{{V_{S.MPQ}}}}{{{V_{S.ACD}}}} = \frac{{SM}}{{SA}} \cdot \frac{{SP}}{{SC}} \cdot \frac{{SQ}}{{SD}} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}\)
\( \Rightarrow {V_{S.MPQ}} = \frac{1}{8}{V_{S.ACD}}\)
Do đó: \[{V_{S.MNPQ}} = {V_{S.MNP}} + {V_{S.MPQ}} = \frac{1}{8}{V_{S.ABC}} + \frac{1}{8}{V_{S.ACD}}\]
\[ = \frac{1}{8}\left( {{V_{S.ABC}} + {V_{S.ACD}}} \right) = \frac{1}{8}{V_{S.ABCD}}\]
\( \Rightarrow \frac{{{V_{S.MNPQ}}}}{{{V_{S.ABCD}}}} = \frac{1}{8}\).Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi H là trung điểm của AB suy ra SH ⏊ AB .
Mà \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\end{array} \right.\) nên SH ⏊ (ABCD)
Gọi O = AC Ç BD.
Ta có: \(\left\{ \begin{array}{l}AC \cap \left( {SBD} \right) = O\\AO = OC\end{array} \right. \Rightarrow d\left( {C,\;\left( {SBD} \right)} \right) = d\left( {A,\;\left( {SBD} \right)} \right)\)
Lại có: \(\left\{ \begin{array}{l}AH \cap \left( {SBD} \right) = B\\AB = 2HB\end{array} \right. \Rightarrow d\left( {A,\;\left( {SBD} \right)} \right) = 2d\left( {H,\;\left( {SBD} \right)} \right)\)
\( \Rightarrow d\left( {H,\;\left( {SBD} \right)} \right) = \frac{1}{2}d\left( {A,\;\left( {SBD} \right)} \right)\)
Do đó \(\frac{{d\left( {C,\;\left( {SBD} \right)} \right)}}{{d\left( {H,\;\left( {SBD} \right)} \right)}} = \frac{{d\left( {A,\;\left( {SBD} \right)} \right)}}{{\frac{1}{2}d\left( {A,\;\left( {SBD} \right)} \right)}} = 2\).
Kẻ HM ⏊ BD (M Î BD), kẻ HK ⏊ SM tại K
Ta có: \(\left\{ \begin{array}{l}BD \bot HM\\BD \bot SH\;\left( {do\;SH \bot \left( {ABCD} \right)} \right)\end{array} \right.\)
\( \Rightarrow BD \bot \left( {SHM} \right) \Rightarrow BD \bot HK\).
Lại có HK ⏊ SM Þ HK ⏊ (SBD) tại K Þ HK = d(H, (SBD)).
Vì ABCD là hình vuông nên AO ⏊ BD mà HM ⏊ BD Þ HM // AO.
Lại có H là trung điểm của AB nên M là trung điểm của BO.
Suy ra HM là đường trung bình của tam giác ABO
\( \Rightarrow HM = \frac{{AO}}{2} = \frac{1}{2}\,.\,\frac{{a\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{4}\).
Xét tam giác SMH vuông tại H, ta có \(HM = \frac{{a\sqrt 2 }}{4};\;SH = \frac{{a\sqrt 3 }}{2}\) nên
\(\frac{1}{{H{K^2}}} = \frac{1}{{H{M^2}}} + \frac{1}{{S{H^2}}} = \frac{1}{{{{\left( {\frac{{a\sqrt 2 }}{4}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}} = \frac{{28}}{{3{a^2}}}\)
\( \Rightarrow HK = \frac{{a\sqrt {21} }}{{14}} \Rightarrow d\left( {C,\;\left( {SBD} \right)} \right) = 2d\left( {H,\;\left( {SBD} \right)} \right) = \frac{{a\sqrt {21} }}{7}\).
Vậy khoảng cách từ C đến mặt phẳng (SBD) bằng \(\frac{{a\sqrt {21} }}{7}\).
Lời giải
Ta có: \({2^{{x^2}\, - \,x\, + \,8}} = {4^{1\, - \,3x}}\)
\( \Leftrightarrow {2^{{x^2} - x + 8}} = {2^{2\left( {1 - 3x} \right)}}\)
\( \Leftrightarrow {2^{{x^2} - x + 8}} = {2^{2 - 6x}}\)
Logarit cơ số 2 hai vế ta được: \({\log _2}{2^{{x^2} - x + 8}} = {\log _2}{2^{2 - 6x}}\)
Þ x2 − x + 8 = 2 − 6x
Û x2 + 5x + 6 = 0
\( \Leftrightarrow \left[ \begin{array}{l}x = - 3\\x = - 2\end{array} \right.\)
Vậy nghiệm của phương trình là x = −2 và x = −3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.