Từ các chữ số: 1; 2; 3; 4; 5; 6. Có thể lập được bao nhiêu số có ba chữ số khác nhau và tổng của ba số đó chia hết cho 3.
Từ các chữ số: 1; 2; 3; 4; 5; 6. Có thể lập được bao nhiêu số có ba chữ số khác nhau và tổng của ba số đó chia hết cho 3.
Quảng cáo
Trả lời:
Gọi số cần tìm có dạng \(\overline {abc} \;\left( {1 \le a,\;b,\;c \le 6;\;a \ne b \ne c} \right)\)
Các bộ số (a; b; c) thỏa mãn là: (1; 2; 3); (4; 5; 6); (2; 3; 4); (1; 5; 6); (1; 3; 5); (1; 2; 6)
Số các số tạo được thỏa mãn yêu cầu là: 6.P3 = 36 (số).
Vậy lập được 36 số thỏa mãn yêu cầu bài toán.Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi H là trung điểm của AB suy ra SH ⏊ AB .
Mà \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\end{array} \right.\) nên SH ⏊ (ABCD)
Gọi O = AC Ç BD.
Ta có: \(\left\{ \begin{array}{l}AC \cap \left( {SBD} \right) = O\\AO = OC\end{array} \right. \Rightarrow d\left( {C,\;\left( {SBD} \right)} \right) = d\left( {A,\;\left( {SBD} \right)} \right)\)
Lại có: \(\left\{ \begin{array}{l}AH \cap \left( {SBD} \right) = B\\AB = 2HB\end{array} \right. \Rightarrow d\left( {A,\;\left( {SBD} \right)} \right) = 2d\left( {H,\;\left( {SBD} \right)} \right)\)
\( \Rightarrow d\left( {H,\;\left( {SBD} \right)} \right) = \frac{1}{2}d\left( {A,\;\left( {SBD} \right)} \right)\)
Do đó \(\frac{{d\left( {C,\;\left( {SBD} \right)} \right)}}{{d\left( {H,\;\left( {SBD} \right)} \right)}} = \frac{{d\left( {A,\;\left( {SBD} \right)} \right)}}{{\frac{1}{2}d\left( {A,\;\left( {SBD} \right)} \right)}} = 2\).
Kẻ HM ⏊ BD (M Î BD), kẻ HK ⏊ SM tại K
Ta có: \(\left\{ \begin{array}{l}BD \bot HM\\BD \bot SH\;\left( {do\;SH \bot \left( {ABCD} \right)} \right)\end{array} \right.\)
\( \Rightarrow BD \bot \left( {SHM} \right) \Rightarrow BD \bot HK\).
Lại có HK ⏊ SM Þ HK ⏊ (SBD) tại K Þ HK = d(H, (SBD)).
Vì ABCD là hình vuông nên AO ⏊ BD mà HM ⏊ BD Þ HM // AO.
Lại có H là trung điểm của AB nên M là trung điểm của BO.
Suy ra HM là đường trung bình của tam giác ABO
\( \Rightarrow HM = \frac{{AO}}{2} = \frac{1}{2}\,.\,\frac{{a\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{4}\).
Xét tam giác SMH vuông tại H, ta có \(HM = \frac{{a\sqrt 2 }}{4};\;SH = \frac{{a\sqrt 3 }}{2}\) nên
\(\frac{1}{{H{K^2}}} = \frac{1}{{H{M^2}}} + \frac{1}{{S{H^2}}} = \frac{1}{{{{\left( {\frac{{a\sqrt 2 }}{4}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}} = \frac{{28}}{{3{a^2}}}\)
\( \Rightarrow HK = \frac{{a\sqrt {21} }}{{14}} \Rightarrow d\left( {C,\;\left( {SBD} \right)} \right) = 2d\left( {H,\;\left( {SBD} \right)} \right) = \frac{{a\sqrt {21} }}{7}\).
Vậy khoảng cách từ C đến mặt phẳng (SBD) bằng \(\frac{{a\sqrt {21} }}{7}\).
Lời giải
ĐKXĐ: \(\left\{ \begin{array}{l}m{x^2} \ge 4\\x \ne 1\end{array} \right. \Rightarrow m > 0\)
Ta có:
• \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {m{x^2} - 4} }}{{x - 1}} = \sqrt m \)
• \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {m{x^2} - 4} }}{{x - 1}} = - \sqrt m \)
Suy ra đồ thị hàm số có 2 đường tiệm cận ngang \(y = \pm \sqrt m ,\,\;\left( {m > 0} \right)\)
Để đồ thị hàm số \(y = \frac{{\sqrt {m{x^2} - 4} }}{{x - 1}}\) có 3 đường tiệm cận thì đồ thị hàm số phải có 1 đường tiệm cận đứng.
Suy ra x = 1 phải thỏa mãn điều kiện mx2 ≥ 4 Û m ≥ 4.
Do đó, m ≥ 4 thì hàm số đã cho có 1 đường tiệm cận đứng và 2 đường tiệm cận ngang.
Mặt khác, m Î [−10; 10], m Î ℤ nên m Î {4; 5; 6; 7; 8; 9; 10}.
Vậy có tất cả 7 giá trị nguyên của tham số m thỏa mãn bài toán.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
