Câu hỏi:

11/07/2024 536

Một khối chóp có số mặt bằng 2021 thì có số cạnh bằng bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Một khối chóp luôn có một mặt đáy và các mặt bên nên khối chóp có 2021 mặt thì có 2020 mặt bên.

Suy ra mặt đáy có 2020 cạnh, và cũng có 2020 cạnh bên.

Vậy khối chóp đó có tất cả 2020 + 2020 = 4040 (cạnh).

Đề bài 2. Hình chóp có 2020 cạnh thì có bao nhiêu đỉnh?

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều (ảnh 2)

Gọi H là trung điểm của AB suy ra SH AB .

\(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\end{array} \right.\) nên SH (ABCD)

Gọi O = AC Ç BD.

Ta có: \(\left\{ \begin{array}{l}AC \cap \left( {SBD} \right) = O\\AO = OC\end{array} \right. \Rightarrow d\left( {C,\;\left( {SBD} \right)} \right) = d\left( {A,\;\left( {SBD} \right)} \right)\)

Lại có: \(\left\{ \begin{array}{l}AH \cap \left( {SBD} \right) = B\\AB = 2HB\end{array} \right. \Rightarrow d\left( {A,\;\left( {SBD} \right)} \right) = 2d\left( {H,\;\left( {SBD} \right)} \right)\)

\( \Rightarrow d\left( {H,\;\left( {SBD} \right)} \right) = \frac{1}{2}d\left( {A,\;\left( {SBD} \right)} \right)\)

Do đó \(\frac{{d\left( {C,\;\left( {SBD} \right)} \right)}}{{d\left( {H,\;\left( {SBD} \right)} \right)}} = \frac{{d\left( {A,\;\left( {SBD} \right)} \right)}}{{\frac{1}{2}d\left( {A,\;\left( {SBD} \right)} \right)}} = 2\).

Kẻ HM BD (M Î BD), kẻ HK SM tại K

Ta có: \(\left\{ \begin{array}{l}BD \bot HM\\BD \bot SH\;\left( {do\;SH \bot \left( {ABCD} \right)} \right)\end{array} \right.\)

\( \Rightarrow BD \bot \left( {SHM} \right) \Rightarrow BD \bot HK\).

Lại có HK SM Þ HK (SBD) tại K Þ HK = d(H, (SBD)).

Vì ABCD là hình vuông nên AO BD mà HM BD Þ HM // AO.

Lại có H là trung điểm của AB nên M là trung điểm của BO.

Suy ra HM là đường trung bình của tam giác ABO

\( \Rightarrow HM = \frac{{AO}}{2} = \frac{1}{2}\,.\,\frac{{a\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{4}\).

Xét tam giác SMH vuông tại H, ta có \(HM = \frac{{a\sqrt 2 }}{4};\;SH = \frac{{a\sqrt 3 }}{2}\) nên

\(\frac{1}{{H{K^2}}} = \frac{1}{{H{M^2}}} + \frac{1}{{S{H^2}}} = \frac{1}{{{{\left( {\frac{{a\sqrt 2 }}{4}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}} = \frac{{28}}{{3{a^2}}}\)

\( \Rightarrow HK = \frac{{a\sqrt {21} }}{{14}} \Rightarrow d\left( {C,\;\left( {SBD} \right)} \right) = 2d\left( {H,\;\left( {SBD} \right)} \right) = \frac{{a\sqrt {21} }}{7}\).

Vậy khoảng cách từ C đến mặt phẳng (SBD) bằng \(\frac{{a\sqrt {21} }}{7}\).

Lời giải

Ta có: \({2^{{x^2}\, - \,x\, + \,8}} = {4^{1\, - \,3x}}\)

\( \Leftrightarrow {2^{{x^2} - x + 8}} = {2^{2\left( {1 - 3x} \right)}}\)

\( \Leftrightarrow {2^{{x^2} - x + 8}} = {2^{2 - 6x}}\)

Logarit cơ số 2 hai vế ta được: \({\log _2}{2^{{x^2} - x + 8}} = {\log _2}{2^{2 - 6x}}\)

Þ x2 − x + 8 = 2 − 6x

Û x2 + 5x + 6 = 0

\( \Leftrightarrow \left[ \begin{array}{l}x = - 3\\x = - 2\end{array} \right.\)

Vậy nghiệm của phương trình là x = −2 và x = −3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay