Cho khối trụ có hai đáy là (O) và (O'). AB, CD lần lượt là hai đường kính của (O) và (O'), góc giữa AB và CD bằng 30°, AB = 6 và thể tích khối tứ diện ABCD bằng 30. Thể tích khối trụ đã cho bằng:
Cho khối trụ có hai đáy là (O) và (O'). AB, CD lần lượt là hai đường kính của (O) và (O'), góc giữa AB và CD bằng 30°, AB = 6 và thể tích khối tứ diện ABCD bằng 30. Thể tích khối trụ đã cho bằng:
Quảng cáo
Trả lời:


Gọi A', B' lần lượt là hình chiếu của A, B lên đường tròn (O).
C', D' lần lượt là hình chiếu của C, D lên đường tròn (O').
Suy ra AC'BD' là hình bình hành, lại có AB = CD = C'D' nên AC'BD' là hình chữ nhật.
Khi đó AC'BD'.A'CB'D là hình hộp chữ nhật.
Ta có: VAC'BD'.A'CB'D = VA.BCD + VA.A'CD + VB.B'CD + VC.C'AB + VD.D'AB
\({V_{A.A'CD}} = \frac{1}{3}AA'\,.\,{S_{A'CD}} = \frac{1}{3}AA'\,.\,\frac{1}{2}{S_{A'CB'D}} = \frac{1}{6}{V_{AC'BD'.A'CB'D}}\)
Chứng minh tương tự ta có: \({V_{B.B'CD}} = {V_{C.C'AB}} = {V_{D.D'AB}} = \frac{1}{6}{V_{AC'BD'.A'CB'D}}\)
\[ \Rightarrow {V_{AC'BD'.A'CB'D}} = {V_{ABCD}} + 4\,.\,\frac{1}{6}{V_{AC'BD'.A'CB'D}}\]
\[ \Rightarrow {V_{ABCD}} = \frac{1}{3}{V_{AC'BD'.A'CB'D}} = 30\]
Þ VAC'BD'.A'CB'D = 90.
Theo bài ra ta có: \(\left( {\widehat {AB;\;CD}} \right) = 30^\circ \Rightarrow \left( {\widehat {AB;\;C'D'}} \right) = 30^\circ \).
Giả sử \(\left( {\widehat {AB;\;C'D'}} \right) = \widehat {AOC'} = 30^\circ \).
Lại có: \[OA = OC' = \frac{1}{2}AB = 3\]
\( \Rightarrow {S_{OAC'}} = \frac{1}{2}OA\,.\,OC'\,.\,\sin \widehat {AOC'} = \frac{1}{2}\,.\,3\,.\,3\,.\,\sin 30^\circ = \frac{9}{4}\)
Þ SAC'BD' = 4SOAC' = 9.
Ta có: VAC'BD'.A'CB'D = AA'.SAC'BD'
Þ 90 = AA'.9 Û AA' = 10.
Vậy thể tích khối trụ là:
V = pr2h = p.OA2.AA' = p.32.10 = 90p.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi H là trung điểm của AB suy ra SH ⏊ AB .
Mà \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\end{array} \right.\) nên SH ⏊ (ABCD)
Gọi O = AC Ç BD.
Ta có: \(\left\{ \begin{array}{l}AC \cap \left( {SBD} \right) = O\\AO = OC\end{array} \right. \Rightarrow d\left( {C,\;\left( {SBD} \right)} \right) = d\left( {A,\;\left( {SBD} \right)} \right)\)
Lại có: \(\left\{ \begin{array}{l}AH \cap \left( {SBD} \right) = B\\AB = 2HB\end{array} \right. \Rightarrow d\left( {A,\;\left( {SBD} \right)} \right) = 2d\left( {H,\;\left( {SBD} \right)} \right)\)
\( \Rightarrow d\left( {H,\;\left( {SBD} \right)} \right) = \frac{1}{2}d\left( {A,\;\left( {SBD} \right)} \right)\)
Do đó \(\frac{{d\left( {C,\;\left( {SBD} \right)} \right)}}{{d\left( {H,\;\left( {SBD} \right)} \right)}} = \frac{{d\left( {A,\;\left( {SBD} \right)} \right)}}{{\frac{1}{2}d\left( {A,\;\left( {SBD} \right)} \right)}} = 2\).
Kẻ HM ⏊ BD (M Î BD), kẻ HK ⏊ SM tại K
Ta có: \(\left\{ \begin{array}{l}BD \bot HM\\BD \bot SH\;\left( {do\;SH \bot \left( {ABCD} \right)} \right)\end{array} \right.\)
\( \Rightarrow BD \bot \left( {SHM} \right) \Rightarrow BD \bot HK\).
Lại có HK ⏊ SM Þ HK ⏊ (SBD) tại K Þ HK = d(H, (SBD)).
Vì ABCD là hình vuông nên AO ⏊ BD mà HM ⏊ BD Þ HM // AO.
Lại có H là trung điểm của AB nên M là trung điểm của BO.
Suy ra HM là đường trung bình của tam giác ABO
\( \Rightarrow HM = \frac{{AO}}{2} = \frac{1}{2}\,.\,\frac{{a\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{4}\).
Xét tam giác SMH vuông tại H, ta có \(HM = \frac{{a\sqrt 2 }}{4};\;SH = \frac{{a\sqrt 3 }}{2}\) nên
\(\frac{1}{{H{K^2}}} = \frac{1}{{H{M^2}}} + \frac{1}{{S{H^2}}} = \frac{1}{{{{\left( {\frac{{a\sqrt 2 }}{4}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}} = \frac{{28}}{{3{a^2}}}\)
\( \Rightarrow HK = \frac{{a\sqrt {21} }}{{14}} \Rightarrow d\left( {C,\;\left( {SBD} \right)} \right) = 2d\left( {H,\;\left( {SBD} \right)} \right) = \frac{{a\sqrt {21} }}{7}\).
Vậy khoảng cách từ C đến mặt phẳng (SBD) bằng \(\frac{{a\sqrt {21} }}{7}\).
Lời giải
Ta có: \({2^{{x^2}\, - \,x\, + \,8}} = {4^{1\, - \,3x}}\)
\( \Leftrightarrow {2^{{x^2} - x + 8}} = {2^{2\left( {1 - 3x} \right)}}\)
\( \Leftrightarrow {2^{{x^2} - x + 8}} = {2^{2 - 6x}}\)
Logarit cơ số 2 hai vế ta được: \({\log _2}{2^{{x^2} - x + 8}} = {\log _2}{2^{2 - 6x}}\)
Þ x2 − x + 8 = 2 − 6x
Û x2 + 5x + 6 = 0
\( \Leftrightarrow \left[ \begin{array}{l}x = - 3\\x = - 2\end{array} \right.\)
Vậy nghiệm của phương trình là x = −2 và x = −3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.