Câu hỏi:
12/07/2024 293Cho khối trụ có hai đáy là (O) và (O'). AB, CD lần lượt là hai đường kính của (O) và (O'), góc giữa AB và CD bằng 30°, AB = 6 và thể tích khối tứ diện ABCD bằng 30. Thể tích khối trụ đã cho bằng:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Gọi A', B' lần lượt là hình chiếu của A, B lên đường tròn (O).
C', D' lần lượt là hình chiếu của C, D lên đường tròn (O').
Suy ra AC'BD' là hình bình hành, lại có AB = CD = C'D' nên AC'BD' là hình chữ nhật.
Khi đó AC'BD'.A'CB'D là hình hộp chữ nhật.
Ta có: VAC'BD'.A'CB'D = VA.BCD + VA.A'CD + VB.B'CD + VC.C'AB + VD.D'AB
\({V_{A.A'CD}} = \frac{1}{3}AA'\,.\,{S_{A'CD}} = \frac{1}{3}AA'\,.\,\frac{1}{2}{S_{A'CB'D}} = \frac{1}{6}{V_{AC'BD'.A'CB'D}}\)
Chứng minh tương tự ta có: \({V_{B.B'CD}} = {V_{C.C'AB}} = {V_{D.D'AB}} = \frac{1}{6}{V_{AC'BD'.A'CB'D}}\)
\[ \Rightarrow {V_{AC'BD'.A'CB'D}} = {V_{ABCD}} + 4\,.\,\frac{1}{6}{V_{AC'BD'.A'CB'D}}\]
\[ \Rightarrow {V_{ABCD}} = \frac{1}{3}{V_{AC'BD'.A'CB'D}} = 30\]
Þ VAC'BD'.A'CB'D = 90.
Theo bài ra ta có: \(\left( {\widehat {AB;\;CD}} \right) = 30^\circ \Rightarrow \left( {\widehat {AB;\;C'D'}} \right) = 30^\circ \).
Giả sử \(\left( {\widehat {AB;\;C'D'}} \right) = \widehat {AOC'} = 30^\circ \).
Lại có: \[OA = OC' = \frac{1}{2}AB = 3\]
\( \Rightarrow {S_{OAC'}} = \frac{1}{2}OA\,.\,OC'\,.\,\sin \widehat {AOC'} = \frac{1}{2}\,.\,3\,.\,3\,.\,\sin 30^\circ = \frac{9}{4}\)
Þ SAC'BD' = 4SOAC' = 9.
Ta có: VAC'BD'.A'CB'D = AA'.SAC'BD'
Þ 90 = AA'.9 Û AA' = 10.
Vậy thể tích khối trụ là:
V = pr2h = p.OA2.AA' = p.32.10 = 90p.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy (minh họa như hình vẽ bên). Tính khoảng cách từ C đến mặt phẳng (SBD).
Câu 2:
Câu 3:
Giải phương trình: \({2^{{x^2}\, - \,x\, + \,8}} = {4^{1\, - \,3x}}\).
Câu 5:
Tìm tất cả các giá trị của m để hàm số y = (m − 1)x3 − 3(m − 1)x2 + 3x + 2 đồng biến biến trên ℝ.
Câu 6:
Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy bằng a và cạnh bên bằng 2a. Tính thể tích của khối lăng trụ đã cho.
Câu 7:
Cho a, b, c là các số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức \(P = \frac{1}{{a + 2b + 3}} + \frac{1}{{b + 2c + 3}} + \frac{1}{{c + 2a + 3}}\).
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
về câu hỏi!