Cho tứ giác ABCD có Các tia phân giác của góc A và góc B cắt nhau tại I. Biết Tính số đo góc C và góc D.
Cho tứ giác ABCD có Các tia phân giác của góc A và góc B cắt nhau tại I. Biết Tính số đo góc C và góc D.
Câu hỏi trong đề: Giải SBT Toán 8 CTST Bài 2. Tứ giác có đáp án !!
Quảng cáo
Trả lời:

Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có:
AB = AD (giả thiết), suy ra A thuộc đường trung trực của BD;
CB = CD (giả thiết), suy ra C thuộc đường trung trực của BD.
Vậy AC là đường trung trực của BD.
b) Xét ∆ABC và ∆ADC, ta có:
AB = AD (giả thiết); BC = DC (giả thiết); AC là cạnh chung.
Suy ra ∆ABC = ∆ADC (c.c.c).
Do đó (hai góc tương ứng)
Xét tứ giác ABCD, ta có
Hay
Do đó
Mà (chứng minh trên) nên
Lời giải
a) Áp dụng định lý Pythagore trong tam giác ABD vuông tại A có:
BD2 = AD2 + AB2 = 42 + 102 = 116
Suy ra
Áp dụng định lý Pythagore trong tam giác ADC vuông tại D có:
AC2 = AD2 + DC2 = 42 + 72 = 65
Suy ra

Kẻ CH ⊥ AB (H ∈ AB), mà AD ⊥ AB nên CH // AD
Ta cũng có DC ⊥ AD và AB ⊥ AD nên DC // AB
Suy ra (các cặp góc so le trong)
Xét ∆ADC và ∆CHA có:
cạnh AC chung,
Do đó ∆ADC = ∆CHA (g.c.g)
Suy ra: CD = AH, AD = CH
Mà CD = 7, AD = 4 nên AH = 7, CH = 4
Ta có: BH = AB ‒ AH = 10 ‒ 7 =3.
Áp dụng định lý Pythagore trong tam giác CBH vuông tại H có:
BC2 = CH2 + BH2 = 32 + 42 = 25
Suy ra
b) Vì tổng số đo các góc của một tứ giác bằng 360° nên trong tứ giác ABCD có:
Suy ra
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
ĐẠI BÀNG
cho tứ giác abcd có góc d=góc a=90 độ ad =4cm ;ab=10cm tính độ dài đường chéo ac; cạnh dc cb ?