Câu hỏi:

12/07/2024 664

c) Một mặt phẳng cắt bốn đường thẳng a, b, c, d lần lượt tại A', B', C', D'. Chứng minh rằng tứ giác A'B'C'D' là hình bình hành.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c) Vì mặt phẳng mp(a, b) song song với mặt phẳng mp(c, d) nên giao tuyến của mặt phẳng (A'B'C'D') với hai mặt phẳng đó song song với nhau, tức là A'B' // C'D'.

Lập luận tương tự có A'D' // B'C', suy ra tứ giác A'B'C'D' là hình bình hành.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hai đường thẳng d, d' cắt ba mặt phẳng (P), (Q), (R) đôi một song song lần lượt tại A, B, C và A', B', C'. Do đó, áp dụng định lí Thales, ta có: ABA'B'=BCB'C'=ACA'C'.

Suy ra B'C'=A'B'.BCAB=3.62=9.

Vậy B'C' = 9 cm.

Lời giải

Cho hình lăng trụ tứ giác ABCD.A'B'C'D' có đáy ABCD là hình thang. Chứng minh rằng đáy A'B'C'D' là hình thang. (ảnh 1)

Giả sử hình thang ABCD có AB // CD.

Ta có các mặt ABB'A' và CDD'C' của hình lăng trụ ABCD.A'B'C'D' là hình bình hành nên AB // A'B' và CD // C'D'.

Vì vậy ta có A'B' // C'D', tức là tứ giác A'B'C'D' là hình thang.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP