Câu hỏi:

13/07/2024 840

Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Chứng minh rằng sáu điểm A, B, C, D, E, F là sáu đỉnh của một hình lăng trụ tam giác.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Chứng minh rằng sáu điểm A, B, C, D, E, F (ảnh 1)

Vì ABCD là hình bình hành nên AB // CD.

Vì ABEF là hình bình hành nên AB // EF.

Do đó, các đường thẳng AB, CD, EF đôi một song song với nhau.

Hai mặt phẳng (ADF) và (BCE) song song với nhau (xem SGK, Bài 14, Ví dụ 1).

Do đó ADF.BCE là hình lăng trụ tam giác.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hai đường thẳng d, d' cắt ba mặt phẳng (P), (Q), (R) đôi một song song lần lượt tại A, B, C và A', B', C'. Do đó, áp dụng định lí Thales, ta có: ABA'B'=BCB'C'=ACA'C'.

Suy ra B'C'=A'B'.BCAB=3.62=9.

Vậy B'C' = 9 cm.

Lời giải

Cho hình lăng trụ tứ giác ABCD.A'B'C'D' có đáy ABCD là hình thang. Chứng minh rằng đáy A'B'C'D' là hình thang. (ảnh 1)

Giả sử hình thang ABCD có AB // CD.

Ta có các mặt ABB'A' và CDD'C' của hình lăng trụ ABCD.A'B'C'D' là hình bình hành nên AB // A'B' và CD // C'D'.

Vì vậy ta có A'B' // C'D', tức là tứ giác A'B'C'D' là hình thang.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP