Câu hỏi:
11/07/2024 271Trong bài toán ở phần mở đầu, giả sử r = 1,14% / năm.
a) Viết phương trình thể hiện dân số sau t năm gấp đôi dân số ban đầu.
b) Phương trình vừa tìm được có ẩn là gì và nằm ở vị trí nào của luỹ thừa?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Ta có công thức S = A . ert, trong đó:
⦁ A là dân số của năm lấy làm mốc tính;
⦁ S là dân số sau t năm;
⦁ r là tỉ lệ tăng dân số hằng năm, và r = 1,14%.
Để dân số sau t năm gấp đôi dân số ban đầu thì S = 2A
Suy ra 2A = A . e1,14%t nên e0,0114t = 2.
Vậy phương trình thể hiện dân số sau t năm gấp đôi dân số ban đầu là e0,0114t = 2.
b) Phương trình vừa tìm được có ẩn là t nằm ở số mũ của lũy thừa.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một người gửi ngân hàng 100 triệu đồng theo hình thức lãi kép có kì hạn là 12 tháng với lãi suất x% / năm (x > 0). Sau 3 năm, người đó rút được cả gốc và lãi là 119,1016 triệu đồng. Tìm x, biết rằng lãi suất không thay đổi qua các năm và người đó không rút tiền ra trong suốt quá trình gửi.
Câu 2:
Dân số được ước tính theo công thức S = A . ert, trong đó A là dân số của năm lấy làm mốc tính, S là dân số sau t năm, r là tỉ lệ tăng dân số hằng năm.
Hỏi sau bao nhiêu năm, dân số sẽ gấp đôi dân số của năm lấy làm mốc tính?
về câu hỏi!