Câu hỏi:

13/07/2024 3,556

b) Chứng minh rằng hai đồ thị trên đối xứng nhau qua đường thẳng y = x, tức là nếu điểm M nằm trên một đồ thị thì điểm M’ đối xứng với M qua đường thẳng y = x sẽ nằm trên đồ thị còn lại.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Xét điểm Ax0;ex0  nằm trên đồ thị hàm số y = ex.

Phương trình đường thẳng (d) đi qua điểm Ax0;ex0  và vuông góc với đường thẳng y = x có dạng :y=x+x0+ex0 .

b) Chứng minh rằng hai đồ thị trên đối xứng nhau qua đường thẳng y = x, tức là nếu điểm M nằm trên một đồ thị thì điểm M’ đối xứng với M qua đường thẳng y = x sẽ nằm trên đồ thị còn lại. (ảnh 1)

Gọi B là giao điểm của đường thẳng (d) và đường thẳng y = x.

Khi đó Bx0+ex02;x0+ex02  .

Gọi A’ là điểm đối xứng với A qua đường thẳng y = x. Khi đó B là trung điểm của AA’.

Do đó xA'=2xBxAyA'=2yByAxA'=2x0+ex02x0yA'=2x0+ex02ex0xA'=ex0yA'=x0  . Vậy A'ex0;x0 .

Thay tọa độ điểm A'ex0;x0  vào hàm số y = ln x, ta được x0=lnex0  (luôn đúng),

Vậy  A'ex0;x0  thuộc đồ thị hàm số y = ln x.

Tương tự, nếu B(x0; ln x0) nằm trên đồ thị hàm số y = ln x thì ta cũng tìm được điểm B’ đối xứng với B qua đường thẳng y = x và điểm B’ thuộc đồ thị hàm số y = ex.

Vậy hai đồ thị đã cho đối xứng với nhau qua đường thẳng y = x.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Trong các hàm số sau, hàm số nào nghịch biến?

Lời giải

Đáp án đúng là: D

Lời giải

Đáp án đúng là: A

Điều kiện: 2(x + 1) > 0 x > – 1.

Ta có: log 2(x + 1) > 1 Û log 2(x + 1) > log 10

Û 2(x + 1) > 10 Û 2x + 2 > 10 Û 2x > 8 Û x > 4.

Vậy nghiệm của bất phương trình là x > 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay