b) Chứng minh rằng hai đồ thị trên đối xứng nhau qua đường thẳng y = x, tức là nếu điểm M nằm trên một đồ thị thì điểm M’ đối xứng với M qua đường thẳng y = x sẽ nằm trên đồ thị còn lại.
b) Chứng minh rằng hai đồ thị trên đối xứng nhau qua đường thẳng y = x, tức là nếu điểm M nằm trên một đồ thị thì điểm M’ đối xứng với M qua đường thẳng y = x sẽ nằm trên đồ thị còn lại.
Quảng cáo
Trả lời:
b) Xét điểm nằm trên đồ thị hàm số y = ex.
Phương trình đường thẳng (d) đi qua điểm và vuông góc với đường thẳng y = x có dạng : .

Gọi B là giao điểm của đường thẳng (d) và đường thẳng y = x.
Khi đó .
Gọi A’ là điểm đối xứng với A qua đường thẳng y = x. Khi đó B là trung điểm của AA’.
Do đó . Vậy .
Thay tọa độ điểm vào hàm số y = ln x, ta được (luôn đúng),
Vậy thuộc đồ thị hàm số y = ln x.
Tương tự, nếu B(x0; ln x0) nằm trên đồ thị hàm số y = ln x thì ta cũng tìm được điểm B’ đối xứng với B qua đường thẳng y = x và điểm B’ thuộc đồ thị hàm số y = ex.
Vậy hai đồ thị đã cho đối xứng với nhau qua đường thẳng y = x.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Lời giải
Đáp án đúng là: A
Điều kiện: 2(x + 1) > 0 ⇔ x > – 1.
Ta có: log 2(x + 1) > 1 Û log 2(x + 1) > log 10
Û 2(x + 1) > 10 Û 2x + 2 > 10 Û 2x > 8 Û x > 4.
Vậy nghiệm của bất phương trình là x > 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.