Câu hỏi:

13/07/2024 572

Viết phương trình tiếp tuyến của đồ thị hàm số y = (x2 – 1)2 – 3 tại các giao điểm của nó với đồ thị hàm số y = 10 – x2.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hoành độ giao điểm của đồ thị hàm số y = (x2 – 1)2 – 3 và đồ thị hàm số y = 10 – x2 là nghiệm của phương trình: (x2 – 1)2 – 3 = 10 – x2

Û x4 – 2x2 + 1 – 3 = 10 – x2

Û x4 – x2 – 12 = 0

Û (x2 + 3)(x2 – 4) = 0

Û x2 – 4 = 0 (do x2 + 3 > 0 với mọi x)

Û x = 2 hoặc x = −2.

Với x = 2, ta có tọa độ giao điểm A(2; 6).

Với x = −2, ta có tọa độ giao điểm B(−2; 6).

Có y' = [(x2 – 1)2 – 3]' = 2(x2 – 1)(x2 – 1)' = 4x(x2 – 1).

+) Viết phương trình tiếp tuyến của đồ thị hàm số tại A(2; 6).

Hệ số góc của tiếp tuyến là k = y'(2) = 4×2×(22 – 1) = 24.

Do đó phương trình tiếp tuyến của đồ thị hàm số tại A(2; 6) là:

y = 24(x – 2) + 6 hay y = 24x – 42.

+) Viết phương trình tiếp tuyến của đồ thị hàm số tại B(−2; 6).

Hệ số góc của tiếp tuyến là k = y'(−2) = 4×(−2)×[(−2)2 – 1] = −24.

Do đó phương trình tiếp tuyến của đồ thị hàm số tại B(−2; 6) là:

y = −24(x + 2) + 6 hay y = −24x – 42.

Vậy y = 24x – 42 và y = −24x – 42 là hai tiếp tuyến cần tìm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số f(x)=x+4x2

a) Tìm tập xác định của hàm số đã cho.

b) Tính đạo hàm f'(x) và tìm tập xác định của f'(x).

c) Tìm x sao cho f'(x) = 0.

Xem đáp án » 13/07/2024 3,247

Câu 2:

Hệ số góc của tiếp tuyến của đồ thị hàm số y=12xx+2  tại điểm có hoành độ x = −1 là

A. k = 5.

B. k = 2.

C. k = −2.

D. k = −5.

Xem đáp án » 13/07/2024 2,323

Câu 3:

Cho hàm số y = x3 – 3x2 + 2x – 1 có đồ thị là đường cong (C). Tìm tọa độ điểm M thuộc đồ thị (C) sao cho tiếp tuyến của (C) tại điểm M song song với đường thẳng có phương trình y = 2x – 1.

Xem đáp án » 13/07/2024 2,064

Câu 4:

Cho hàm số fx=x2x           khix0x3+mx   khix>0,  với m là tham số. Tìm m để hàm số có đạo hàm tại mọi x Î ℝ.

Xem đáp án » 13/07/2024 2,001

Câu 5:

Tính đạo hàm các hàm số sau:

a) y=x22x+4x3

b) y = 2x + log3(1 – 2x);

c) y=12xx2+1                 

d) y = sin2x + cos23x.

Xem đáp án » 13/07/2024 1,978

Câu 6:

Cho hàm số y = excosx. Đẳng thức đúng là

A. y" – 2y' – 2y = 0.

B. y" – 2y' + 2y = 0.

C. y" + 2y' – 2y = 0.

D. y" + 2y' + 2y = 0.

Xem đáp án » 13/07/2024 1,969

Câu 7:

Tiếp tuyến của đồ thị hàm số y=23x34x2+5x+3  với hệ số góc nhỏ nhất có phương trình là

A. y = 3x − 25.

B. y = −3x + 25.

C. y=3x+253

D. y=3x253

Xem đáp án » 13/07/2024 1,939

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn