Câu hỏi:

13/07/2024 1,809

Cho hai tam giác vuông ABC và DEF có các kích thước như Hình 4.

a) Hãy tính độ dài cạnh AC và DF.

b) So sánh các tỉ số \[\frac{{AB}}{{DE}},\frac{{AC}}{{DF}}\;\] và \[\frac{{BC}}{{EF}}\].

c) Dự đoán sự đồng dạng của hai tam giác ABC và DEF.

Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

a) Áp dụng định lí Pythagore cho tam giác vuông ABC, ta có: 

BC2 = AB2 + AC2 

Suy ra AC2 = BC2 AB2 = 102 62 = 64

Do đó AC = 8.

Áp dụng định lí Pythagore cho tam giác vuông DEF, ta có: 

EF2 = DE2 + DF2 

Suy ra DF2 = EF2 DE2 = 152 92 = 144.

Do đó DF = 12.

b) Ta có: \[\frac{{AB}}{{DE}} = \frac{6}{9} = \frac{2}{3},\;\frac{{AC}}{{DF}} = \frac{8}{{12}} = \frac{2}{3},\;\frac{{BC}}{{EF}} = \frac{{10}}{{15}} = \frac{2}{3}\].

Suy ra \[\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}} = \frac{{BC}}{{EF}}\].

c) Xét ΔABC và ΔDEF có: \[\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}} = \frac{{BC}}{{EF}}\] (câu b).

Dự đoán: ΔABC ΔDEF.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Media VietJack

a) Xét hai tam giác vuông AMH và AHB có: \[\widehat A\] chung

Suy ra ΔAMH ΔAHB (g.g)

b) ΔAMH ΔAHB nên \[\frac{{AM}}{{AH}} = \frac{{AH}}{{AB}}\;\] hay AM.AB = AH2 (1)

Xét hai tam giác vuông ANH và AHC có: \[\widehat A\] chung

Suy ra ΔANH ΔAHC (g.g) nên \[\frac{{AN}}{{AH}} = \frac{{AH}}{{AC}}\;\] hay AN.AC = AH2 (2)

Từ (1) và (2) suy ra AM.AB = AN.AC (đpcm).

c) Ta có AM.AB = AN.AC, do đó \[\frac{{AN}}{{AB}} = \frac{{AM}}{{AC}}\].

Xét hai tam giác vuông AMN và ABC có:

\[\frac{{AN}}{{AB}} = \frac{{AM}}{{AC}}\] (chứng minh trên)

Do đó ΔANM ΔABC (c.g.c)

d) Áp dụng định lí Pythagore vào tam giác ABC, ta có: 

BC2 = AB2 + AC2 = 92 + 122 = 225.

Suy ra BC = 15 cm.

Xét hai tam giác vuông ABC và HBA có \(\widehat B\) chung

Do đó ΔABC ΔHBA (g.g).

Suy ra \[\frac{{AC}}{{AH}} = \frac{{BC}}{{AB}}\] (các cặp cạnh tương ứng).

Khi đó AH.BC = AB.AC hay AH.15 = 9.12.

Suy ra AH = 7,2 cm.

• Từ (1): AM.AB = AH2 nên \[AM = \frac{{A{H^2}}}{{AB}} = \frac{{7,{2^2}}}{9} = 5,76\,\,(cm)\]

• Từ (2): AN.AC = AH2 nên \[AN = \frac{{A{H^2}}}{{AC}} = \frac{{7,{2^2}}}{{12}} = 4,32\,\,(cm)\]

Diện tích tam giác AMN là: 

\[\frac{1}{2}\,.\,5,76\,.\,4,32 = 12,4416\,\,(c{m^2})\].

Vậy diện tích tam giác AMN là 12,4416 cm2.

Lời giải

Lời giải:

Tam giác HED vuông tại H và tam giác DEF vuông tại D có   chung

Do đó ΔHED ΔDEF (g.g)

Suy ra  (các cạnh tương ứng).

Do đó DE2 = EH.EF (đpcm).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP