Câu hỏi:
13/07/2024 877Cho hai tam giác vuông ABC và DEF có các kích thước như Hình 4.
a) Hãy tính độ dài cạnh AC và DF.
b) So sánh các tỉ số \[\frac{{AB}}{{DE}},\frac{{AC}}{{DF}}\;\] và \[\frac{{BC}}{{EF}}\].
c) Dự đoán sự đồng dạng của hai tam giác ABC và DEF.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải:
a) Áp dụng định lí Pythagore cho tam giác vuông ABC, ta có:
BC2 = AB2 + AC2
Suy ra AC2 = BC2 – AB2 = 102 – 62 = 64
Do đó AC = 8.
Áp dụng định lí Pythagore cho tam giác vuông DEF, ta có:
EF2 = DE2 + DF2
Suy ra DF2 = EF2 – DE2 = 152 – 92 = 144.
Do đó DF = 12.
b) Ta có: \[\frac{{AB}}{{DE}} = \frac{6}{9} = \frac{2}{3},\;\frac{{AC}}{{DF}} = \frac{8}{{12}} = \frac{2}{3},\;\frac{{BC}}{{EF}} = \frac{{10}}{{15}} = \frac{2}{3}\].
Suy ra \[\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}} = \frac{{BC}}{{EF}}\].
c) Xét ΔABC và ΔDEF có: \[\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}} = \frac{{BC}}{{EF}}\] (câu b).
Dự đoán: ΔABC ᔕ ΔDEF.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A có đường cao AH. Kẻ HM vuông góc với AB tại M.
a) Chứng minh rằng ΔAMH ᔕ ΔAHB.
b) Kẻ HN vuông góc với AC tại N. Chứng minh rằng AM.AB = AN.AC.
c) Chứng minh rằng ΔANM ᔕ ΔABC.
d) Cho biết AB = 9 cm, AC = 12 cm. Tính diện tích tam giác AMH.
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Quan sát hình 9
a) Chứng minh rằng ΔDEF ᔕ ΔHDF.
b) Chứng minh DF2 = FH.FE.
c) Biết EF = 15 cm, FH = 5,4 cm. Tính độ dài đoạn thẳng DF.
Câu 6:
Câu 7:
Quan sát Hình 12. Chứng minh rằng:
a) ΔABH ᔕ ΔDCB.
b) \[\frac{{BC}}{{BE}} = \frac{{BD}}{{BA}}\].
về câu hỏi!