Câu hỏi:

13/07/2024 459 Lưu

Cho tam giác ABC vuông tại A (AB < AC) và kẻ đường cao AH. Tia phân giác của \[\widehat B\]cắt AC tại E và cắt AH tại F. Chứng minh rằng:

AE = AF.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A (AB < AC) Chứng minh rằng AE = AF (ảnh 1)

Ta có ∆ABE ∆HBF.

Suy ra \[\widehat {AEB} = \widehat {HFB}\] hay \[\widehat {AEF} = \widehat {HFB}\] (các góc tương ứng).

\[\widehat {AFE} = \widehat {HFB}\] (đối đỉnh) nên \[\widehat {AEF} = \widehat {AFE}\]. Suy ra ∆AEF cân tại A.

Do đó AE = AF.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét ∆ABC vuông tại B và ∆MNC vuông tại N có \[\widehat {ACB} = \widehat {MCN}\].

Do đó ∆ABC ∆MNC (g.g).

Suy ra \[\frac{{AB}}{{MN}} = \frac{{BC}}{{NC}}\] hay \[\frac{{1,65}}{{MN}} = \frac{4}{{20}}\].

Do đó \[MN = \frac{{1,65\,.\,20}}{4} = 8,25\] (m).

Vậy chiều cao MN của căn nhà là 8,25 m.

Lời giải

Cho tam giác ABC vuông tại A (AB < AC) Chứng minh rằng AE^2 = EC . FH (ảnh 1)

Xét ∆ABC có BE là tia phân giác của \[\widehat B\], suy ra \[\frac{{AB}}{{BC}} = \frac{{AE}}{{EC}}\]  (1)

Xét ∆ABH có BF là tia phân giác của \[\widehat B\], suy ra \[\frac{{FH}}{{AF}} = \frac{{BH}}{{AB}}\] (2)

Xét ∆ABH vuông tại H và ∆ABC vuông tại A có \[\widehat B\] chung.

Do đó ∆ABH ∆CBA, suy ra \[\frac{{AB}}{{BC}} = \frac{{BH}}{{AB}}\]         (3)

Từ (1); (2) và (3) suy ra \[\frac{{AE}}{{EC}} = \frac{{FH}}{{AF}}\].

Do đó AE . AF = EC . FH.

Mà AE = AF, suy ra AE2 = EC . FH (đpcm).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP