Câu hỏi:

04/12/2023 1,438

Cho ΔABC. Trên tia đối của tia BC lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho BE = CF. Gọi G là trọng tâm tam giác ABC. Tia AG cắt BC tại M. Khẳng định nào sau đây là đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: A

Cho tam giác ABC. Trên tia đối của tia BC lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho BE = CF (ảnh 1)

Ta có: G là trọng tâm của tam giác ABC nên AG là trung tuyến của tam giác

Mà AG cắt BC tại M nên M là trung điểm của BC

Do đó MB = MC.

Lại có BE = CF (giả thiết)

Nên MB + BE = MC + CF hay ME = MF.

Suy ra AM là đường trung tuyến ứng với cạnh EF của ΔAEF.

Mặt khác AG=23AM (do G là trọng tâm của ΔABC).

Do đó G là trọng tâm của ΔAEF

Mà G là trọng tâm của ΔABC, nên hai tam giác ABC và AEF có cùng trọng tâm là điểm G.

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Đáp án đúng là: B

Cho hai đoạn thẳng AC và BD cắt nhau tại trung điểm O của mỗi đoạn. Gọi M, N lần lượt là trung (ảnh 1)

Ta có: ΔABC có hai đường trung tuyến BO, AM cắt nhau tại I nên I là trọng tâm của ΔABC.

Suy ra BI=23BO (tính chất trọng tâm của tam giác)

Ta có: ΔADC có hai đường trung tuyến DO, AN cắt nhau tại K nên K là trọng tâm của ΔABC.

Suy ra DK=23DO (tính chất trọng tâm của tam giác)

Mặt khác BO = DO (do O là trung điểm của BD)

Do đó: BI=DK=23DO=2312BD=13BD

Suy ra IK=BDBIDK=BD13BD13BD=13BD.

Khi đó BI = IK = KD.

Câu 2

Lời giải

Hướng dẫn giải:

Đáp án đúng là: A

Cho tam giác ABC, điểm M thuộc cạnh BC sao cho BM = 2MC. Trên tia đối của tia CA lấy điểm  (ảnh 1)

Xét ΔABD có AC = CD nên C là trung điểm của AD

Do đó BC là đường trung tuyến của ΔABD.

Mà BM = 2MC nên BM=23BC.

Ta có M nằm trên đường trung tuyến BC và thỏa mãn BM=23BC nên M là trọng tâm của ΔABD.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP