Câu hỏi:

04/12/2023 383

Cho ∆ABC có AD, BE, CF là ba đường trung tuyến cắt nhau tại G. Cho các phát biểu sau:

(I) AD+BE+CF>34AB+BC+AC;

(II) AD + BE + CF < AB + BC + AC.

Chọn khẳng định đúng:

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Cho ∆ABC có AD, BE, CF là ba đường trung tuyến cắt nhau tại G. Cho các phát biểu sau: (ảnh 1)

• Ta xét (I):

Xét ∆ABC có AD, BE, CF là ba đường trung tuyến cắt nhau tại G nên G là trọng tâm của ∆ABC, do đó GB=23BE và GC=23CF.

∆GBC có GB + GC > BC (bất đẳng thức tam giác).

Suy ra 23BE+23CF>BC

Hay 23BE+CF>BC

Do đó BE+CF>32BC  (1).

Chứng minh tương tự ta được:

AD+BE>32AB  (2).

AD+CF>32AC  (3).

Lấy (1) + (2) + (3) vế theo vế, ta được:

2AD+2BE+2CF>32AB+32BC+32AC

Suy ra 2AD+BE+CF>32AB+BC+AC

Do đó AD+BE+CF>34AB+BC+AC.

Vậy (I) đúng.

• Ta xét (II):

Trên tia AD, lấy điểm A’ sao cho DA’ = DA.

Xét ∆ADB và ∆A’DC, có:

DA = DA’ (theo cách dựng);

ADB^=A'DC^ (hai góc đối đỉnh);

BD = CD (do AD là đường trung tuyến của ∆ABC)

Do đó ∆ADB = ∆A’DC (c.g.c).

Suy ra AB = A’C (hai cạnh tương ứng).

Áp dụng bất đẳng thức tam giác cho ∆AA’C, ta được: AA’ < AC + A’C.

Suy ra AA’ < AC + AB hay 2AD < AC + AB (4).

Chứng minh tương tự, ta được:

2BE < AB + BC (5).

2CF < AC + BC (6).

Lấy (4) + (5) + (6) vế theo vế, ta được:

2AD + 2BE + 2CF < 2AC + 2AB + 2BC.

Suy ra 2(AD + BE + CF) < 2(AB + AC + BC).

Do đó AD + BE + CF < AB + AC + BC.

Vậy (II) đúng.

Kết luận: cả (I) và (II) đều đúng.

Ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ΔABC. Trên tia đối của tia BC lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho BE = CF. Gọi G là trọng tâm tam giác ABC. Tia AG cắt BC tại M. Khẳng định nào sau đây là đúng?

Xem đáp án » 04/12/2023 1,264

Câu 2:

Cho ∆ABC, điểm M thuộc cạnh BC sao cho BM = 2MC. Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Gọi E là giao điểm của AM và BD. Khi đó điểm M là

Xem đáp án » 04/12/2023 579

Câu 3:

Cho hai đoạn thẳng AC và BD cắt nhau tại trung điểm O của mỗi đoạn. Gọi M, N lần lượt là trung điểm của BC, CD. Đoạn thẳng AM, AN cắt BD lần lượt tại I và K. Khẳng định nào sau đây là đúng?

Xem đáp án » 04/12/2023 481

Câu 4:

Cho tam giác ΔABC có đường trung tuyến AD, trên đoạn thẳng AD lấy điểm E và F sao cho AE = EF = FD. Điểm F là:

Xem đáp án » 04/12/2023 417

Câu 5:

Cho ΔABC có đường trung tuyến BM. Trên tia BM lấy hai điểm G, K sao cho BG=23BM và G là trung điểm của BK. Gọi E là trung điểm của CK, GE cắt AC tại I. Điểm I là trọng tâm của tam giác nào?

Xem đáp án » 04/12/2023 342

Câu 6:

Cho hình vẽ như bên dưới. Biết AM = 12 cm.

Cho hình vẽ như bên dưới. Biết AM = 12 cm.    Độ dài của đoạn thẳng AG là (ảnh 1)

Độ dài của đoạn thẳng AG là

Xem đáp án » 04/12/2023 309

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store