Câu hỏi:

04/12/2023 295

Cho tam giác ABC có M là trung điểm của cạnh BC và D là điểm sao cho M là trung điểm của AD. Đường thẳng qua D và trung điểm E của AB cắt BC tại U, đường thẳng qua D và trung điểm F của AC cắt BC tại V. Khẳng định nào sau đây là sai?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: C

Cho tam giác ABC có M là trung điểm của cạnh BC và D là điểm sao cho M là trung điểm của (ảnh 1)

Tam giác BAC có M là trung điểm của BC nên suy ra MB = MC (1)

Xét ∆ABD có U là giao của hai đường trung tuyến BM và DE nên U là trọng tâm của ∆ABD.

Suy ra BU=23BM          (2)

Từ đó ta có: UM=BMBU=BM23BM=13BM (3)

Do đó khẳng định C là sai. Đến đây ta có thể chọn phương án C.

Xét phương án D:

Xét ∆ACD có V là giao của hai đường trung tuyến CM và DF nên V là trọng tâm của ∆ACD.

Suy ra CV=23CM (4)

Từ đó ta có: MV=CMCV=CM23CM=13CM (5)

Từ (1), (3), (5) ta có: UV=UM+MV=13MB+13MC=23MB (6)

Do đó khẳng định D là đúng.

Xét phương án A và B:

Từ (1), (2), (4), (6) ta có: BU=UV=VC=23MB.

Do đó khẳng định A và B là đúng.

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Đáp án đúng là: A

Cho ΔABC có I là giao điểm của hai tia phân giác của góc A và B. Qua I kẻ đường thẳng (ảnh 1)

Xét ∆ABC có I là giao điểm của hai tia phân giác A^ B^ nên CI là tia phân giác của C^

Vì MN // BC nên C^1=I^2 (hai góc so le trong)

C^1=C2^ nên C^2=I^2

Do đó ΔNIC cân tại N nên NC = NI.   (1)

Tương tự, ta có: MB = MI.        (2)

Từ (1) và (2) ta có: MI + IN = BM + CN hay MN = BM + CN.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay