Câu hỏi:

06/12/2023 2,554

Trong mặt phẳng với hệ tọa độ Oxy, cho ba điểm A(0; 1), B(12; 5) và C(–3; 0). Đường thẳng có phương trình nào sau đây cách đều ba điểm A, B và C?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: A

Ta có AB=12;4 AC=3;1=4AB nên hai vectơ này cùng phương.

Do đó ba điểm A, B, C thẳng hàng nên đường thẳng d cách đều A, B, C là đường thẳng song song hoặc trùng với AB.

Ta thấy trong 4 phương án, không có đường thẳng nào đi qua A nên ta loại trường hợp d trùng AB. Khi đó đường thẳng d // AB.

Ta thấy đường thẳng x – 3y + 4 = 0 có một vectơ pháp tuyến là n=1;3 nên nhận AB=12;4 làm một vectơ chỉ phương. Do đó đường thẳng này song song với AB.

Vậy ta chọn phương án A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Trong mặt phẳng tọa độ Oxy, phương trình đường thẳng d song song với d’: 3x + 4y – 1 = 0 và cách d’ một khoảng bằng 2 là

Lời giải

Hướng dẫn giải:

Đáp án đúng là: B

Đường thẳng d song song với đường thẳng d’ nên phương trình đường thẳng d’ có dạng 3x + 4y + c = 0.

Lấy điểm M(–1; 1) thuộc vào d’ nên ta có:

dd,d'=dM,d'=23+4+c5=2c+1=10c=9c=11.

Với c = 9 ta có d : 3x + 4y + 9 = 0.

Với c = –11 ta có d: 3x + 4y – 11 = 0.

Lời giải

Hướng dẫn giải:

Đáp án đúng là: B

Gọi H(x0; y0) là điểm cố định mà đường thẳng Δ luôn đi qua.

Khi đó x0 + (m – 1)y0 + m = 0 với mọi m

(y0 + 1)m + x0 – y0 = 0 với mọi m

y0+1=0x0y0=0y0=1x0=y0x0=1y0=1

Suy ra Δ luôn đi qua điểm cố định H(–1; –1).

Với A(5; 1) và H(–1; –1) ta có AH=6;2 nên AH=62+22=210.

Gọi M là hình chiếu của A trên Δ, ta có d(A, ∆) = AM ≤ AH.

Giá trị lớn nhất của d(A, Δ) = AH khi M ≡ H, suy ra maxd(A, Δ) = AH = 210.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Trong mặt phẳng tọa độ Oxy, phương trình đường thẳng đi qua A(–1; 2) và cách B(3; 5) một khoảng bằng 3 là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Trong mặt phẳng tọa độ Oxy, phương trình đường thẳng d vuông góc với đường thẳng Δ: 2x + y – 1 = 0 và cách điểm M(3; – 2) một khoảng bằng 5 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay