Câu hỏi:

13/07/2024 1,626

Quy đồng mẫu thức các phân thức sau:

\(\frac{{25}}{{14{x^2}y}}\)\(\frac{{14}}{{21x{y^5}}}\);

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Mẫu thức chung là: 42x2y5

Ta có: 42x2y5 : 14x2y = 3y4 ; 42x2y5 : 21xy5 = 2x

Quy đồng mẫu thức ta có:

\(\frac{{25}}{{14{x^2}y}} = \frac{{25.3{y^4}}}{{14{x^2}y.3{y^4}}} = \frac{{75{y^4}}}{{42{x^2}{y^5}}}\)

\(\frac{{14}}{{21x{y^5}}} = \frac{{14.2x}}{{21x{y^5}.2x}} = \frac{{28x}}{{42{x^2}{y^5}}}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\frac{{4x - 4}}{{2x\left( {x + 3} \right)}} = \frac{{2\left( {2x - 2} \right)}}{{2x\left( {x + 3} \right)}} = \frac{{2x - 2}}{{x\left( {x + 3} \right)}}\).

Mẫu thức chung: 3x(x + 3)(x + 1).

Ta có:

3x(x + 3)(x + 1) : x(x + 3) = 3(x + 1)

3x(x + 3)(x + 1) : 3x(x + 1) = (x + 3)

Quy đồng mẫu thức ta có:

\(\frac{{2x - 2}}{{x\left( {x + 3} \right)}} = \frac{{\left( {2x - 2} \right).3\left( {x + 1} \right)}}{{x\left( {x + 3} \right).3\left( {x + 1} \right)}} = \frac{{3\left( {2x - 2} \right)\left( {x + 1} \right)}}{{3x\left( {x + 3} \right)\left( {x + 1} \right)}}\)

\( = \frac{{6\left( {x - 1} \right)\left( {x + 1} \right)}}{{3x\left( {x + 3} \right)\left( {x + 1} \right)}} = \frac{{6\left( {{x^2} - 1} \right)}}{{3x\left( {x + 3} \right)\left( {x + 1} \right)}}\);

\[\frac{{x - 3}}{{3x\left( {x + 1} \right)}} = \frac{{\left( {x - 3} \right).\left( {x + 3} \right)}}{{3x\left( {x + 1} \right).\left( {x + 3} \right)}} = \frac{{\left( {x - 3} \right)\left( {x + 3} \right)}}{{3x\left( {x + 3} \right)\left( {x + 1} \right)}} = \frac{{{x^2} - 9}}{{3x\left( {x + 3} \right)\left( {x + 1} \right)}}\].

Lời giải

Mẫu thức chung: (1 – x)(x + 1)(x2 + 1) = (1 – x2)(x2 + 1) = 1 – x4.

Quy đồng mẫu thức ta có:

\(\frac{1}{{1 - x}} = \frac{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}}{{\left( {1 - x} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right)}} = \frac{{\left( {x + 1} \right)\left( {{x^2} + 1} \right)}}{{1 - {x^4}}}\);

\(\frac{1}{{x + 1}} = \frac{{\left( {1 - x} \right)\left( {{x^2} + 1} \right)}}{{\left( {1 - x} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right)}} = \frac{{\left( {1 - x} \right)\left( {{x^2} + 1} \right)}}{{1 - {x^4}}}\);

\(\frac{1}{{{x^2} + 1}} = \frac{{\left( {1 - x} \right)\left( {x + 1} \right)}}{{\left( {1 - x} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right)}} = \frac{{\left( {1 - x} \right)\left( {x + 1} \right)}}{{1 - {x^4}}} = \frac{{1 - {x^2}}}{{1 - {x^4}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay