Giải SBT Toán 8 KNTT Tính chất cơ bản của phân thức đại số có đáp án
44 người thi tuần này 4.6 550 lượt thi 12 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức có đáp án - Đề 10
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức có đáp án - Đề 05
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức có đáp án - Đề 04
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức có đáp án - Đề 03
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức có đáp án - Đề 02
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức có đáp án - Đề 01
Bộ 5 đề thi cuối kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi cuối kì 2 Toán 8 Chân trời sáng tạo (Tự luận) có đáp án - Đề 4
Danh sách câu hỏi:
Lời giải
Điều kiện xác định của phân thức \(\frac{{{x^4} - 1}}{{x - 1}}\) là x – 1 ≠ 0 hay x ≠ 1.
Với điều kiện trên, ta có:
\(\frac{{{x^4} - 1}}{{x - 1}} = \frac{{\left( {{x^2} - 1} \right)\left( {{x^2} + 1} \right)}}{{x - 1}} = \frac{{\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right)}}{{x - 1}}\)
\( = \frac{{\left( {x - 1} \right)\left( {x + 1} \right)\left( {{x^2} + 1} \right):\left( {x - 1} \right)}}{{\left( {x - 1} \right):\left( {x - 1} \right)}}\)
\( = \left( {x + 1} \right)\left( {{x^2} + 1} \right) = {x^3} + {x^2} + x + 1\).Lời giải
Với x ≠ 0, y ≠ 0. Ta có:
\(\frac{{24{x^2}{y^2}}}{{3x{y^5}}} = \frac{{24{x^2}{y^2}:3x{y^2}}}{{3x{y^5}:3x{y^2}}} = \frac{{8x}}{{{y^3}}}\).
Áp dụng quy tắc đổi dấu: \(\frac{{8x}}{{{y^3}}} = \frac{{ - 8x}}{{ - {y^3}}}\).
Do đó, \(\frac{{24{x^2}{y^2}}}{{3x{y^5}}} = \frac{{ - 8x}}{{ - {y^3}}} = \frac{B}{{ - {y^3}}}\).
Vậy B = –8x.
Lời giải
Điều kiện xác định của phân thức \(\frac{{x - {x^2}}}{{5{x^2} - 5}}\) là: 5x2 – 5 ≠ 0 hay 5(x2 – 1) ≠ 0, điều đó có nghĩa là 5(x – 1)(x + 1) ≠ 0 hay x ≠ 1 và x ≠ –1.
Với điều kiện trên, ta có:
\(\frac{{x - {x^2}}}{{5{x^2} - 5}} = \frac{{x\left( {1 - x} \right)}}{{5\left( {{x^2} - 1} \right)}} = \frac{{x\left( {1 - x} \right)}}{{5\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{x\left( {1 - x} \right)}}{{ - 5\left( {1 - x} \right)\left( {x + 1} \right)}}\)
\( = \frac{{x\left( {1 - x} \right):\left( {1 - x} \right)}}{{ - 5\left( {1 - x} \right)\left( {x + 1} \right):\left( {1 - x} \right)}} = \frac{x}{{ - 5\left( {x + 1} \right)}} = \frac{x}{{ - 5x - 5}}\)
Do đó, ta có: \(\frac{{x - {x^2}}}{{5{x^2} - 5}} = \frac{x}{{ - 5x - 5}} = \frac{x}{A}\).
Vậy A = –5x – 5.
Lời giải
Ta có:
\(\frac{{2x + 2xy + y + {y^2}}}{{{y^3} + 3{y^2} + 3y + 1}} = \frac{{\left( {2x + 2xy} \right) + \left( {y + {y^2}} \right)}}{{\left( {{y^3} + 1} \right) + \left( {3{y^2} + 3y} \right)}}\)
\( = \frac{{2x\left( {1 + y} \right) + y\left( {1 + y} \right)}}{{\left( {y + 1} \right)\left( {{y^2} - y + 1} \right) + 3y\left( {y + 1} \right)}}\)
\( = \frac{{\left( {y + 1} \right)\left( {2x + y} \right)}}{{\left( {y + 1} \right)\left( {{y^2} - y + 1 + 3y} \right)}} = \frac{{\left( {y + 1} \right)\left( {2x + y} \right)}}{{\left( {y + 1} \right)\left( {{y^2} + 2y + 1} \right)}}\)
\( = \frac{{2x + y}}{{{y^2} + 2y + 1}} = \frac{{2x + y}}{{{{\left( {y + 1} \right)}^2}}}\).
Lời giải
Ta có:
\(P = \frac{{\left( {2{x^2} + 2x} \right){{\left( {2 - x} \right)}^2}}}{{\left( {{x^3} - 4x} \right)\left( {x + 1} \right)}} = \frac{{2x\left( {x + 1} \right){{\left( {2 - x} \right)}^2}}}{{x\left( {{x^2} - 4} \right)\left( {x + 1} \right)}}\)
\( = \frac{{2x\left( {x + 1} \right){{\left( {x - 2} \right)}^2}}}{{x\left( {x - 2} \right)\left( {x + 2} \right)\left( {x + 1} \right)}}\)
\( = \frac{{2\left( {x - 2} \right)}}{{x + 2}} = \frac{{2x - 4}}{{x + 2}}\).
Thay x = 0,5 vào P ta có: \(P = \frac{{2.0,5 - 4}}{{0,5 + 2}} = - 1,2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.