Câu hỏi:
13/07/2024 662Rút gọn phân thức \(\frac{{2x + 2xy + y + {y^2}}}{{{y^3} + 3{y^2} + 3y + 1}}\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có:
\(\frac{{2x + 2xy + y + {y^2}}}{{{y^3} + 3{y^2} + 3y + 1}} = \frac{{\left( {2x + 2xy} \right) + \left( {y + {y^2}} \right)}}{{\left( {{y^3} + 1} \right) + \left( {3{y^2} + 3y} \right)}}\)
\( = \frac{{2x\left( {1 + y} \right) + y\left( {1 + y} \right)}}{{\left( {y + 1} \right)\left( {{y^2} - y + 1} \right) + 3y\left( {y + 1} \right)}}\)
\( = \frac{{\left( {y + 1} \right)\left( {2x + y} \right)}}{{\left( {y + 1} \right)\left( {{y^2} - y + 1 + 3y} \right)}} = \frac{{\left( {y + 1} \right)\left( {2x + y} \right)}}{{\left( {y + 1} \right)\left( {{y^2} + 2y + 1} \right)}}\)
\( = \frac{{2x + y}}{{{y^2} + 2y + 1}} = \frac{{2x + y}}{{{{\left( {y + 1} \right)}^2}}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Quy đồng mẫu thức các phân thức sau:
\(\frac{1}{{1 - x}}\); \(\frac{1}{{x + 1}}\) và \(\frac{1}{{{x^2} + 1}}\).
Câu 2:
Quy đồng mẫu thức các phân thức sau:
\(\frac{{4x - 4}}{{2x\left( {x + 3} \right)}}\) và \(\frac{{x - 3}}{{3x\left( {x + 1} \right)}}\).
Câu 3:
Rút gọn rồi tính giá trị của các phân thức sau:
\(P = \frac{{\left( {2{x^2} + 2x} \right){{\left( {2 - x} \right)}^2}}}{{\left( {{x^3} - 4x} \right)\left( {x + 1} \right)}}\) với x = 0,5;
Câu 4:
Rút gọn phân thức \(\frac{{x - {x^2}}}{{5{x^2} - 5}}\) rồi tìm đa thức A trong đẳng thức \(\frac{{x - {x^2}}}{{5{x^2} - 5}} = \frac{x}{A}\).
Câu 5:
Tìm mẫu thức chung của ba phân thức sau:
\(\frac{1}{{{x^2} - x}}\); \(\frac{x}{{1 - {x^3}}}\) và \(\frac{{ - 1}}{{{x^2} + x + 1}}\).
Quy đồng mẫu thức ba phân thức đã cho với mẫu thức chung tìm được.
Câu 6:
Quy đồng mẫu thức các phân thức sau:
\(\frac{{25}}{{14{x^2}y}}\) và \(\frac{{14}}{{21x{y^5}}}\);
về câu hỏi!