Câu hỏi trong đề: 10 Bài tập Bất phương trình lôgarit (có lời giải) !!
Quảng cáo
Trả lời:
Đáp án đúng là: C
Điều kiện: x > 0.
Khi đó bất phương trình trở thành
⇔
⇔ log4x3 ≤ 3
⇔ x3 ≤ 43
⇔ x ≤ 4.
Kết hợp với điều kiện ta được bất phương trình có nghiệm là 0 < x ≤ 4.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Điều kiện: x – 40 > 0 và 60 – x > 0, tức 40 < x < 60.
Bất phương trình trở thành log[(x – 40)(60 – x)] < 2 hay – x2 +100x – 2400 < 102.
Từ đó ta có – x2 +100x – 2500 < 0.
Vì – x2 +100x – 2500 = – (x – 50)2 < 0 với mọi x.
Kết hợp với điều kiện ta được 19 nghiệm nguyên dương của bất phương trình đã cho là:{41; 42; 43; 44; 45; 46; 47; …..; 59}.
Lời giải
Đáp án đúng là: B
Điều kiện: x > 0 và 2 – x2 > 0, tức .
Bất phương trình trở thành log3x-1 + log3(2 – x2) ≥ 0 hay
⇔
⇔
⇔
⇔ 0 < x ≤ 1 (vì x > 0).
Kết hợp với điều kiện ta được nghiệm của bất phương trình là 0 < x £ 1.
Vậy bất phương trình có một nghiệm nguyên là x = 1 nên tổng các nghiệm nguyên là 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.