Câu hỏi:

11/03/2024 1,491

Một quả bóng đá tiêu chuẩn thường được sử dụng tại các giải thi đấu có diện tích bề mặt là 484π cm2. Coi quả bóng đá có dạng hình cầu, tính thể tích của quả bóng (làm tròn kết quả đến một chữ số thập phân và lấy π3,140).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Đề thi thử dành cho học sinh tự rèn luyện nên không có lời giải

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp số: \(76{\rm{\;m}}.\)

Ta có \(Bx\)\(AC\) cùng nằm trên phương ngang nên \(Bx\,{\rm{//}}\,AC,\) do đó \[\widehat {ACB} = \widehat {xBC} = 20^\circ ;\] \(\widehat {ADB} = \widehat {xBD} = 30^\circ \) (các cặp góc so le trong).

Xét tam giác \(ABC\) vuông tại \(A\), ta có \[AC = AB \cdot \cot C = \frac{{AB}}{{\tan C}} = \frac{{75}}{{\tan 20^\circ }}{\rm{\;(m)}}{\rm{.}}\]

Xét tam giác \(ABD\) vuông tại \(A\), ta có \(AD = AB \cdot \cot D = \frac{{AB}}{{\tan D}} = \frac{{75}}{{\tan 30^\circ }}{\rm{\;(m)}}{\rm{.}}\)

Ta có \(CD = AC - AD = \frac{{75}}{{\tan 20^\circ }} - \frac{{75}}{{\tan 30^\circ }} \approx 76{\rm{\;(m)}}{\rm{.}}\)

Vậy con tàu đã đi được xấp xỉ \(76{\rm{\;(m)}}\) giữa hai lần quan sát.

Lời giải

Đáp án:               a) Đúng;         b) Sai;            c) Đúng;         d) Sai.

a) Tổng số quyển vở đã mua là 500 quyển nên \(x + y = 500\).

b) Tổng số tiền nhà trường mua 500 quyển vở là 4 200 000 đồng nên \(8\,\,000x + 9\,\,000y = 4\,\,200\,\,000\) hay \(8x + 9y = 4\,\,200\)

c) Ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{x + y = 500}\\{8x + 9y = 4\,\,200.}\end{array}} \right.\)

Sử dụng máy tính cầm tay giải hệ phương trình (1) ta được \(\left\{ {\begin{array}{*{20}{l}}{x = 300}\\{y = 200}\end{array}} \right.\) (thỏa mãn điều kiện).

d) Gọi \(u,\,\,v\) lần lượt là số học sinh Xuất sắc và số học sinh Giỏi \(\left( {u,\,\,v \in {\mathbb{N}^*}} \right)\).

Mỗi học sinh Xuất sắc được thưởng 02 quyển vở loại thứ nhất và 01 quyển vở loại thứ hai nên ta có phương trình \(2u + v = 300.\)

Mỗi học sinh Giỏi được thưởng 01 quyển vở loại thứ nhất và 01 quyển vở loại thứ hai nên ta có phương trình \(u + v = 200.\)

Ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{2u + v = 300}\\{u + v = 200}\end{array}} \right.\) (2).

Sử dụng máy tính cầm tay giải hệ phương trình (2) ta được \(\left\{ {\begin{array}{*{20}{l}}{u = 100}\\{v = 100}\end{array}} \right.\) (thỏa mãn điều kiện).

Vậy có tổng \(100 + 100 = 200\) học sinh Xuất sắc và Giỏi, chiếm \(40\% \) tổng số học sinh cả trường.

Do đó, tổng số học sinh của trường là \(200:40\% = 500\) (học sinh).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP