Câu hỏi:

13/07/2024 998

Vào khoảng năm 200 trước Công nguyên, Eratosthenes (Ơ-ra-tô-xten), một nhà toán học và thiên văn học người Hy Lạp, đã ước lượng được "chu vi" của Trái Đất (chu vi của đường Xích Đạo) nhờ hai quan sát sau:

1. Hồi đó, hằng năm cứ vào trưa ngày Hạ chí (21/6), người ta thấy tia sáng mặt trời chiếu thẳng xuống đáy một cái giếng sâu nổi tiếng ở thành phố Syene (Xy-en), tức là tia sáng chiếu thẳng đứng.

2. Cũng vào trưa một ngày Hạ chí, ở thành phố Alexandria (A-lếch-xăng-đri-a) cách Syene 800 km, Eratosthenes thấy một tháp cao 25 m có bóng trên mặt đất dài 3,1 m.

Vào khoảng năm 200 trước Công nguyên, Eratosthenes (Ơ-ra-tô-xten) (ảnh 1)

Từ hai quan sát trên, ông có thể tính xấp xỉ "chu vi" của Trái Đất như thế nào? (trên Hình 4.38, điểm O là tâm Trái Đất, điểm S tượng trưng cho thành phố Syene, điểm A tượng trưng cho thành phố Alexandria, điểm H là đỉnh của tháp, bóng của tháp trên mặt đất được coi là đoạn thẳng AB).

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Theo em, nhà toán học và thiên văn học Eratosthenes đã tính xấp xỉ "chu vi" của Trái Đất như sau:

Các tia sáng mặt trời chiếu thẳng đứng, nên ta coi các tia sáng BH, OS song song với nhau. Khi đó AOS^=BHA^ (hai góc so le trong).

Xét ∆ABH vuông tại A, ta có:

tanBHA^=ABAH=3,125=31250, suy ra BHA^7°4'. Do đó AOS^7°4'.

Xét ∆OAS vuông tại S, ta có:

sinAOS^=ASOA, suy ra OA=ASsinAOS^800sin7°4'6  502,79 (km).

Khi đó, “chu vi” của Trái Đất khoảng: 2π.OA ≈ 2 . 3,14 . 6 502,79 ≈ 40 838 (km).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một cây cao bị gãy, ngọn cây đổ xuống mặt đất. Ba điểm: gốc cây, điểm gãy, ngọn cây tạo thành một tam giác vuông. Đoạn cây gãy tạo với mặt đất góc 20° và chắn ngang lối đi một đoạn 5 m (H.4.36). Hỏi trước khi bị gãy, cây cao khoảng bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?

Một cây cao bị gãy, ngọn cây đổ xuống mặt đất. Ba điểm: gốc cây, điểm gãy (ảnh 1)

Xem đáp án » 13/07/2024 11,928

Câu 2:

Xét các tam giác vuông có một góc nhọn bằng hai lần góc nhọn còn lại. Hỏi các tam giác đó có đồng dạng với nhau không? Tính sin và côsin của góc nhọn lớn hơn.

Xem đáp án » 13/07/2024 5,255

Câu 3:

Hình 4.35 là mô hình của một túp lều. Tìm góc α giữa cạnh mái lều và mặt đất (làm tròn kết quả đến phút).

Hình 4.35 là mô hình của một túp lều. Tìm góc α giữa cạnh mái lều và mặt đất (ảnh 1)

Xem đáp án » 13/07/2024 5,148

Câu 4:

Với mọi góc nhọn α, ta có

A. sin(90° – α) = cosα.

B. tan(90° – α) = cosα.

C. cot(90° – α) = 1 – tanα.

D. cot(90° – α) = sinα.

Xem đáp án » 13/07/2024 4,615

Câu 5:

Giá trị tan30° bằng

A. 3.

B. 32.

C. 13.

D. 1.

Xem đáp án » 13/07/2024 2,802

Câu 6:

Cho tam giác ABC vuông tại A, có B^=α (H.4.37).

a) Hãy viết các tỉ số lượng giác sinα, cosα.

Xem đáp án » 13/07/2024 2,075

Câu 7:

b) Sử dụng định lí Pythagore, chứng minh rằng sin2α + cos2α = 1.

Xem đáp án » 13/07/2024 2,004

Bình luận


Bình luận