Câu hỏi:

12/07/2024 882

Có bao nhiêu số tự nhiên x để 16x là số nguyên?

A. 2.

B. 3.

C. 4.

D. 5.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

ĐKXĐ: 16 x 0 hay x 16.

Vì x là số tự nhiên nên 0 x 16.

Do đó 0 16 x 16.

16x là số nguyên nên (16 x) số chính phương.

Suy ra (16 x) {0; 1; 4; 9; 16}.

Ta có bảng sau:

16 x

0

1

4

9

16

x

16 (TM)

15 (TM)

12 (TM)

7 (TM)

0 (TM)

16x

0 (TM)

1 (TM)

2 (TM)

3 (TM)

4 (TM)

Vậy có 5 số tự nhiên x thỏa mãn yêu cầu là x {0; 7; 12; 15; 16}.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Biết rằng 1 < a < 5, rút gọn biểu thức A=a12+a52

Xem đáp án » 12/07/2024 1,236

Câu 2:

Trục căn thức ở mẫu các biểu thức sau:

a) 42648;

b) 353+5;

c) aaa với a > 0, a ≠ 1.

Xem đáp án » 12/07/2024 1,136

Câu 3:

Biết rằng a > 0, b > 0 và ab = 16. Tính giá trị của biểu thức A=a12ba+b3ab.

Xem đáp án » 12/07/2024 1,005

Câu 4:

Một trục số được vẽ trên lưới ô vuông như Hình 1.

Một trục số được vẽ trên lưới ô vuông như Hình 1.a) Đường tròn tâm O bán kính  (ảnh 1)

a) Đường tròn tâm O bán kính OA cắt trục số tại hai điểm M và N. Hai điểm M và N biểu diễn hai số thực nào?

Xem đáp án » 12/07/2024 878

Câu 5:

Cho biểu thức P=1a+a1a+1:a1a+2a+1 với a > 0, a ≠ 1.

a) Rút gọn biểu thức P.

Xem đáp án » 12/07/2024 821

Câu 6:

Tìm x, biết:

a) x2 = 10;

b) x=8

c) x3 = −0,027;

d) x3=23

Xem đáp án » 12/07/2024 775

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store