Câu hỏi:
12/07/2024 51,065Kính viễn vọng không gian Hubble được đưa vào vũ trụ ngày 24/4/1990 bằng tàu con thoi Discovery. Vận tốc của tàu con thoi trong sứ mệnh này, từ lúc cất cánh tại thời điểm t = 0 (s) cho đến khi tên lửa đẩy được phóng đi tại thời điểm t = 126 (s), cho bởi hàm số sau:
v(t) = 0,001302t3 – 0,09029t2 + 23,
(v được tính bằng ft/s, 1 feet = 0,3048 m)
(Nguồn: J. Stewart, Calculus, Seventh Edition, Brooks/Cole, CENGAGE Learning 2012)
Hỏi gia tốc của tàu con thoi sẽ tăng trong khoảng thời gian nào tính từ thời điểm cất cánh cho đến khi tên lửa đẩy được phóng đi?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Xét hàm số vận tốc của tàu con thoi v(t) = 0,001302t3 – 0,09029t2 + 23 với t ∈ [0; 126].
Gia tốc của tàu con thoi là a(t) = v'(t) = 0,003906t2 – 0,18058t.
Ta có a'(t) = 0,007812t – 0,18058
a'(t) = 0 ⇔ t ≈ 23.
Bảng biến thiên của hàm số a(t) như sau:
Vậy gia tốc của tàu con thoi sẽ tăng trong khoảng thời gian (23 s; 126 s) tính từ thời điểm cất cánh cho đến khi tên lửa đẩy được phóng đi.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Thể tích V (đơn vị: centimét khối) của 1 kg nước tại nhiệt độ T (0 °C ≤ T ≤ 30 °C) được tính bởi công thức sau:
V(T) = 999,87 – 0,06426T + 0,0085043T2 – 0,0000679T3.
(Nguồn: J. Stewart, Calculus, Seventh Edition, Brooks/Cole, CENGAGE Learning 2012)
Hỏi thể tích V(T), 0 °C ≤ T ≤ 30 °C, giảm trong khoảng nhiệt độ nào?
Câu 2:
Một doanh nghiệp dự kiến lợi nhuận khi sản xuất x sản phẩm (0 ≤ x ≤ 300) được cho bởi hàm số y = – x3 + 300x2 (đơn vị: nghìn đồng) và được minh họa bằng đồ thị ở Hình 1.
Sự thay đổi lợi nhuận theo số sản phẩm sản xuất ra và dấu của đạo hàm y' có mối liên hệ với nhau như thế nào?
Câu 4:
Tìm các khoảng đơn điệu của mỗi hàm số sau:
a) y = – x3 + 2x2 – 3;
về câu hỏi!