Câu hỏi:
17/04/2024 54,933Một bác nông dân có ba tấm lưới thép B40, mỗi tấm dài a (m) và muốn rào một mảnh vườn dọc bờ sông có dạng hình thang cân ABCD như Hình 36 (bờ sông là đường thẳng CD không phải rào). Hỏi bác đó có thể rào được mảnh vườn có diện tích lớn nhất là bao nhiêu mét vuông?
Quảng cáo
Trả lời:
Dựng các đường cao AE và BF của hình thang cân ABCD như hình vẽ trên.
Vì ABCD là hình thang cân nên DE = FC và EF = AB = a.
Đặt DE = FC = x (m) (x > 0).
Ta có DC = DE + EF + FC = x + a + x = 2x + a.
Theo định lí Pythagore, ta suy ra AE = (m).
Rõ ràng, x phải thỏa mãn điều kiện 0 < x < a.
Diện tích của hình thang cân ABCD là
S = (AB + CD)AE = (a + 2x + a) = (a + x) (m2).
Xét hàm số S(x) = (a + x) với x ∈ (0; a).
Ta có S'(x) = ;
S'(x) = 0 ⇔ – 2x2 – ax + a2 = 0 ⇔ (x + a)(a – 2x) = 0 ⇔ x = – a hoặc x = .
Khi đó trên khoảng (0; a), S'(x) = 0 khi x = .
Bảng biến thiên của hàm số S(x) như sau:
Căn cứ vào bảng biến thiên, ta thấy hàm số S(x) đạt giá trị lớn nhất bằng tại .
Vậy bác đó có thể rào được mảnh vườn có diện tích lớn nhất là (m2).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử chiều dài từng mặt của ba mặt hàng rào song song nhau là x (m).
Chi phí để làm ba mặt hàng rào song song là: 3 ∙ x ∙ 50 000 = 150 000x (đồng).
Chi phí để làm mặt hàng rào song song với bờ sông là: 15 000 000 – 150 000x (đồng).
Chiều dài của mặt hàng rào song song với bờ sông là
(m).
Rõ ràng, x phải thỏa mãn điều kiện 0 < x < 100.
Giả sử diện tích hàng rào không đáng kể, khi đó diện tích hai khu đất thu được sau khi làm hàng rào là S(x) = (m2).
Xét hàm số với x ∈ (0; 100).
Ta có S'(x) = .
Trên khoảng (0; 100), S'(x) = 0 khi x = 50.
Bảng biến thiên của hàm số S(x) như sau:
Căn cứ bảng biến thiên, ta thấy: Trên khoảng (0; 100), hàm số S(x) đạt giá trị lớn nhất bằng 6 250 tại x = 50.
Vậy diện tích lớn nhất của hai khu đất thu được sau khi làm hàng rào là 6 250 m2.
Lời giải
Cứ tăng thêm 200 nghìn đồng vào giá thuê một căn hộ trên một tháng thì có một căn hộ bị bỏ trống.
Gọi số lần tăng 200 nghìn đồng vào giá thuê một căn hộ trên một tháng là x (x ∈ ℕ*).
Khi đó x cũng là số căn hộ bị bỏ trống.
Tổng số tiền công ty thu được lúc này là
T(x) = (2 000 + 200x)(20 – x) = 40 000 + 2 000x – 200x2 (nghìn đồng).
Xét hàm số T(x) = 40 000 + 2 000x – 200x2 với x ∈ ℕ*.
Ta có T'(x) = 2 000 – 400x;
T'(x) = 0 ⇔ 2 000 – 400x = 0 ⇔ x = 5 (thỏa mãn).
Bảng biến thiên của hàm số T(x) như sau:
Căn cứ vào bảng biến thiên trên, ta thấy hàm số T(x) đạt giá trị lớn nhất bằng 45 000 khi x = 5.
Khi đó, số tiền tăng lên khi cho thuê một căn hộ là 200 ∙ 5 = 1 000 nghìn đồng = 1 triệu đồng.
Vậy công ty nên cho thuê mỗi căn hộ 3 triệu đồng/1 tháng thì tổng số tiền thu được là lớn nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận