Câu hỏi:

18/04/2024 1,280

Chứng minh rằng nếu một điểm thuộc đường tròn (O) thì:

a) Điểm đối xứng với nó qua tâm O cũng thuộc (O).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Chứng minh rằng nếu một điểm thuộc đường tròn (O) thì: (ảnh 1)

a) Lấy điểm A bất kì thuộc (O).

Gọi A' là điểm đối xứng với A qua O.

Khi đó: O là trung điểm của AA' hay OA = OA' = R.

Suy ra A' cũng thuộc đường tròn (O).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A có AB = 3 cm, AC = 4 cm. Chứng minh rằng các điểm A, B, C thuộc  (ảnh 1)

Gọi O là trung điểm của BC.

Ta có AO là trung tuyến ứng với cạnh huyền nên OA=OB=OC=12BC.

Suy ra A, B, C cùng thuộc đường tròn bán kính OA.

Tâm O là trung điểm của BC nên BC là đường kính.

Do đó, các điểm A, B, C thuộc cùng một đường tròn.

Xét tam giác ABC vuông tại A, áp dụng định lí Pythagore, ta có:

BC2 = AB2 + AC2 = 32 + 42 = 25.

Suy ra BC = 5 cm.

Khi đó OA=12BC=52=2,5  (cm).

Vậy các điểm A, B, C thuộc cùng một đường tròn và có bán kính là 2,5 cm.

Lời giải

Trong mặt phẳng tọa độ Oxy, cho các điểm M (0; 2), N (0; −3) và P(2; −1). (ảnh 1)

Ta có: OM=2<5  nên điểm M nằm trong đường tròn O;  5 .

ON=3>5 nên điểm N nằm ngoài đường tròn O;  5 .

Mặt khác, OP2 = 22 + 12 = 5 (theo định lí Pythagore).

Suy ra OP=5 nên điểm P nằm trên đường tròn O;  5  .

Vậy trong các điểm đã cho, điểm P nằm trên, điểm M nằm trong, điểm N nằm ngoài đường tròn O;  5 .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP