Câu hỏi:

12/07/2024 1,300 Lưu

Cho hai đường tròn (A; R1), (B; R2), trong đó R2 < R1. Biết rằng hai đường tròn (A) và (B) cắt nhau (H.5.44).

Cho hai đường tròn (A; R1), (B; R2), trong đó R2 < R1. Biết rằng (ảnh 1)

Khi đó:

A. AB < R1 − R2.

B. R1 − R2 < AB < R1 + R2.

C. AB > R1 + R2.

D. AB = R1 + R2.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Áp dụng bất đẳng thức trong tam giác ABC, ta có:

AC – BC < AB < AC + BC.

Do đó R1 − R2 < AB < R1 + R2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

Cho đường tròn (O) đường kính BC và điểm A (khác B và C). (ảnh 1)

Vì điểm A nằm trên đường tròn tâm O nên AO = BO = CO.

Tam giác ABC có AO là đường trung tuyến ứng với cạnh BC và AO=12BC nên tam giác ABC vuông tại A.

Chiều ngược lại: Nếu tam giác ABC vuông tại A, gọi O là trung điểm của cạnh huyền BC thì ta có AO = BO = CO (tính chất đường trung tuyến trong tam giác vuông).

Từ đó ta có A, B, C thuộc đường tròn tâm O.

Lời giải

Đáp án đúng là: D

OA=15  cm<4  cm nên điểm A nằm trong (O; 4 cm).

Vì OB = 4 cm nên điểm B nằm trên (O; 4 cm).

Vậy điểm A nằm trong (O), điểm B nằm trên (O).