Câu hỏi:

21/06/2024 766

Cho f(x) là hàm số liên tục trên K, k là một hằng số khác 0. Giả sử F(x) là một nguyên hàm của f(x) trên K.

a) Chứng minh kF(x) là một nguyên hàm của hàm số kf(x) trên K.

b) Nêu nhận xét về kfxdxkfxdx.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Vì F(x) là một nguyên hàm của f(x) trên K nên F'(x) = f(x).

Ta cần chứng minh (kF(x))' = kf(x).

Ta có (kF(x))' = k(F(x))' = kf(x).

Vậy kF(x) là một nguyên hàm của hàm số kf(x) trên K.

b) Vì F(x) là một nguyên hàm của f(x) trên K nên \(\int {f\left( x \right)} dx = F\left( x \right) + C\).

\(\int {kf\left( x \right)} dx = kF\left( x \right) + C'\).

Vì C' ta có thể viết lại bằng kC. Tức là C' = kC.

Do đó \(\int {kf\left( x \right)} dx = kF\left( x \right) + kC = k\left( {F\left( x \right) + C} \right) = k\int {f\left( x \right)dx} \).

Vậy \(\int {kf\left( x \right)} dx = k\int {f\left( x \right)dx} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi S(t) là độ cao của viên đạn bắn lên từ mặt đất sau t giây kể từ thời điểm đạn được bắn lên.

Khi đó \(S\left( t \right) = \int {v\left( t \right)dt = \int {\left( {160 - 9,8t} \right)dt = 160t - 4,9{t^2}} + C} \).

Vì S(0) = 0 nên 160.0 – 4,9.0 + C = 0 Þ C = 0.

Do đó S(t) = −4,9t2 + 160 t.

a) Sau 5 giây độ cao của viên đạn là: S(5) = −4,9.52 + 160.5 = 677,5 (m).

b) Có S(t) = −4,9t2 + 160 t

= \( - \frac{1}{{10}}\left( {49{t^2} - 2.7t.\frac{{800}}{7} + \frac{{640000}}{{49}}} \right) + \frac{{64000}}{{49}}\)

\( - \frac{1}{{10}}{\left( {7t - \frac{{800}}{7}} \right)^2} + \frac{{64000}}{{49}} \le \frac{{64000}}{{49}}\).

Viên đạn đạt độ cao lớn nhất là \(\frac{{64000}}{{49}} \approx 1306,1\) m khi \(t = \frac{{800}}{{49}}\) giây.

Lời giải

c) \(\int {{{\left( {\sin \frac{x}{2} - \cos \frac{x}{2}} \right)}^2}dx} \)\( = \int {\left( {1 - 2\sin \frac{x}{2}\cos \frac{x}{2}} \right)dx} \)\( = \int {dx} - \int {\sin xd} x\)\( = x + \cos x + C\).

d) \(\int {\left( {x + {{\tan }^2}x} \right)} dx\)\( = \int {xdx + \int {\left( {\frac{1}{{{{\cos }^2}x}} - 1} \right)dx} } \)\( = \int {xdx + \int {\frac{1}{{{{\cos }^2}x}}dx - \int {dx} } } \)

\( = \frac{{{x^2}}}{2} + \tan x - x + C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP