Câu hỏi:
13/07/2024 1,297Cá hồi Thái Bình Dương đến mùa sinh sản thường bơi từ biển ngược dòng vào sông và đến thượng nguồn các dòng sông để đẻ trứng. Giả sử cá bơi ngược dòng sông với vận tốc là (km/h). Nếu coi thời điểm ban đầu t = 0 là lúc cá bắt đầu bơi vào dòng sông thì khoảng cách xa nhất mà con cá có thể bơi được là bao nhiêu?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có \(s\left( t \right) = \int {v\left( t \right)dt} = \int {\left( { - \frac{2}{5}t + 4} \right)dt = - \frac{{{t^2}}}{5} + 4t + C} \).
Vì thời điểm ban đầu t = 0 là lúc cá bắt đầu bơi vào dòng sông nên s(0) = 0, suy ra C = 0.
Do đó \(s\left( t \right) = - \frac{{{t^2}}}{5} + 4t\).
Ta có \(s\left( t \right) = - \frac{1}{5}\left( {{t^2} - 20t} \right) = - \frac{1}{5}\left( {{t^2} - 20t + 100} \right) + 20 = - \frac{1}{5}{\left( {t - 10} \right)^2} + 20 \le 20,\forall t \ge 0\).
Vậy khoảng cách xa nhất mà con cá có thể bơi là 20 km.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một viên đạn được bắn lên từ mặt đất theo phương thẳng đứng với vận tốc ban đầu là 30 m/s. Gia tốc trọng trường là 9,8 m/s2. Tìm vận tốc của viên đạn ở thời điểm 2 giây.
Câu 2:
Nghệ thuật làm gốm có lịch sử phát triển lâu đời và vẫn còn tồn tại cho đến ngày nay. Giả sử một bình gốm có mặt trong của bình là một mặt tròn xoay sinh ra khi cho phần đồ thị của hàm số (x, y tính theo cm) quay tròn quanh bệ gốm có trục trùng với trục Ox. Hỏi để hoàn thành bình gốm đó ta cần sử dụng bao nhiêu cm3 đất sét, biết rằng bình gốm đó có độ dày không đổi là 1 cm.
Câu 3:
Một vật chuyển động có gia tốc là a(t) = 3t2 + t (m/s2). Biết rằng vận tốc ban đầu của vật là 2 m/s. Vận tốc của vật đó sau 2 giây là
A. 8 m/s.
B. 10 m/s.
C. 12 m/s.
D. 16 m/s.
Câu 4:
Một nguyên hàm của hàm số f(x) = sin2x là:
A. F(x) = 2cos2x.
B. F(x) = −cos2x.
C. .
D. .
Câu 5:
Cho hàm số f(x) có đạo hàm f'(x) liên tục trên ℝ, f(1) = 16 và . Khi đó giá trị của f(3) bằng
A. 20.
B. 16.
C. 12.
D. 10.
Câu 6:
Nguyên hàm F(x) của hàm số f(x) = ex – 3e−x thỏa mãn F(0) = 4 là
A. F(x) = ex – 3e−x.
B. F(x) = ex + 3e−2x.
C. F(x) = ex + 3e−x.
D. F(x) = ex + 3e−x + 4.
về câu hỏi!