Nghệ thuật làm gốm có lịch sử phát triển lâu đời và vẫn còn tồn tại cho đến ngày nay. Giả sử một bình gốm có mặt trong của bình là một mặt tròn xoay sinh ra khi cho phần đồ thị của hàm số (x, y tính theo cm) quay tròn quanh bệ gốm có trục trùng với trục Ox. Hỏi để hoàn thành bình gốm đó ta cần sử dụng bao nhiêu cm3 đất sét, biết rằng bình gốm đó có độ dày không đổi là 1 cm.
Nghệ thuật làm gốm có lịch sử phát triển lâu đời và vẫn còn tồn tại cho đến ngày nay. Giả sử một bình gốm có mặt trong của bình là một mặt tròn xoay sinh ra khi cho phần đồ thị của hàm số (x, y tính theo cm) quay tròn quanh bệ gốm có trục trùng với trục Ox. Hỏi để hoàn thành bình gốm đó ta cần sử dụng bao nhiêu cm3 đất sét, biết rằng bình gốm đó có độ dày không đổi là 1 cm.
Quảng cáo
Trả lời:
Thể tích đất sét cần sử dụng là:
\(V = \pi \int\limits_0^{31} {{{\left( {\frac{1}{{175}}{x^2} + \frac{3}{{35}}x + 5} \right)}^2}dx} - \pi \int\limits_0^{30} {{{\left( {\frac{1}{{175}}{x^2} + \frac{3}{{35}}x + 5} \right)}^2}dx} \)
\[ = \pi \int\limits_0^{30} {{{\left( {\frac{1}{{175}}{x^2} + \frac{3}{{35}}x + 5} \right)}^2}dx} + \pi \int\limits_{30}^{31} {{{\left( {\frac{1}{{175}}{x^2} + \frac{3}{{35}}x + 5} \right)}^2}dx} - \pi \int\limits_0^{30} {{{\left( {\frac{1}{{175}}{x^2} + \frac{3}{{35}}x + 5} \right)}^2}dx} \]
\[ = \pi \int\limits_{30}^{31} {{{\left( {\frac{1}{{175}}{x^2} + \frac{3}{{35}}x + 5} \right)}^2}dx} \]
\[ = \pi \int\limits_{30}^{31} {\left( {\frac{1}{{{{175}^2}}}{x^4} + \frac{9}{{1225}}{x^2} + 25 + \frac{6}{{6125}}{x^3} + \frac{2}{{35}}{x^2} + \frac{6}{7}x} \right)dx} \]
\[ = \pi \int\limits_{30}^{31} {\left( {\frac{1}{{{{175}^2}}}{x^4} + \frac{6}{{6125}}{x^3} + \frac{{79}}{{1225}}{x^2} + \frac{6}{7}x + 25} \right)dx} \]
\[ = \pi \left. {\left( {\frac{{{x^5}}}{{153125}} + \frac{{3{x^4}}}{{12250}} + \frac{{79{x^3}}}{{3675}} + \frac{{3{x^2}}}{7} + 25x} \right)} \right|_{30}^{31}\]
\[ \approx \pi \left( {2240,4 - 2073,2} \right) = 167,2\pi \] (cm3).
Vậy để hoàn thành bình gốm đó ta cần sử dụng 167,2π cm3 đất sét.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Có \(v\left( t \right) = \int {a\left( t \right)dt = \int {\left( {3{t^2} + t} \right)dt = {t^3} + \frac{{{t^2}}}{2} + C} } \).
Vì v(0) = 2 nên C = 2.
Do đó \(v\left( t \right) = {t^3} + \frac{{{t^2}}}{2} + 2\).
Vậy \(v\left( 2 \right) = {2^3} + \frac{{{2^2}}}{2} + 2 = 12\) (m/s).
Lời giải
Ta có \(s\left( t \right) = \int {v\left( t \right)dt} = \int {\left( { - \frac{2}{5}t + 4} \right)dt = - \frac{{{t^2}}}{5} + 4t + C} \).
Vì thời điểm ban đầu t = 0 là lúc cá bắt đầu bơi vào dòng sông nên s(0) = 0, suy ra C = 0.
Do đó \(s\left( t \right) = - \frac{{{t^2}}}{5} + 4t\).
Ta có \(s\left( t \right) = - \frac{1}{5}\left( {{t^2} - 20t} \right) = - \frac{1}{5}\left( {{t^2} - 20t + 100} \right) + 20 = - \frac{1}{5}{\left( {t - 10} \right)^2} + 20 \le 20,\forall t \ge 0\).
Vậy khoảng cách xa nhất mà con cá có thể bơi là 20 km.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.