Câu hỏi:
11/07/2024 341Trong không gian Oxyz, cho điểm A(1; 0; 2) và hai đường thẳng d: \(\frac{x}{1} = \frac{{y - 1}}{2} = \frac{z}{2}\), \(d':\frac{{x + 1}}{2} = \frac{{y + 2}}{2} = \frac{{z - 3}}{{ - 1}}\).
a) Xét vị trí tương đối của hai đường thẳng d và d'.
b) Viết phương trình đường thẳng D đi qua A và song song với đường thẳng d.
c) Viết phương trình mặt phẳng (P) chứa A và d.
d) Tìm giao điểm của đường thẳng d với mặt phẳng (Oxz).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Đường thẳng d đi qua điểm M(0; 1; 0) và có một vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {1;2;2} \right)\).
Đường thẳng d' đi qua điển N(−1; −2; 3) và có một vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( {2;2; - 1} \right)\).
Có \(\overrightarrow {MN} = \left( { - 1; - 3;3} \right)\), \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( { - 6;5; - 2} \right) \ne \overrightarrow 0 \).
Có \(\overrightarrow {MN} .\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = 6 - 15 - 6 = - 15 \ne 0\).
Suy ra d và d' chéo nhau.
b) Vì D // d nên đường thẳng D nhận \(\overrightarrow {{u_1}} = \left( {1;2;2} \right)\) làm một vectơ chỉ phương.
Đường thẳng D đi qua A(1; 0; 2) và nhận \(\overrightarrow {{u_1}} = \left( {1;2;2} \right)\) làm một vectơ chỉ phương có phương trình là \(\left\{ \begin{array}{l}x = 1 + t\\y = 2t\\z = 2 + 2t\end{array} \right.\).
c) Có \(\overrightarrow {AM} = \left( { - 1;1; - 2} \right)\), \(\left[ {\overrightarrow {AM} ,\overrightarrow {{u_1}} } \right] = \left( {6;0; - 3} \right)\).
Mặt phẳng (P) đi qua A(1; 0; 2) và nhận \(\overrightarrow n = \frac{1}{3}\left[ {\overrightarrow {AM} ,\overrightarrow {{u_1}} } \right] = \left( {2;0; - 1} \right)\) làm một vectơ pháp tuyến có phương trình là: 2(x – 1) – (z – 2) = 0 hay 2x – z = 0.
d) Mặt phẳng (Oxz) có phương trình là: y = 0.
Tọa độ giao điểm của đường thẳng d với mặt phẳng (Oxz) là nghiệm của hệ:
\(\left\{ \begin{array}{l}\frac{x}{1} = \frac{{y - 1}}{2} = \frac{z}{2}\\y = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = - \frac{1}{2}\\y = 0\\z = - 1\end{array} \right.\).
Vậy giao điểm cần tìm có tọa độ là \(\left( { - \frac{1}{2};0; - 1} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian Oxyz, cho mặt phẳng (P): x – 2y – 2z – 3 = 0 và đường thẳng d: . Viết phương trình mặt phẳng (Q) chứa d và vuông góc với mặt phẳng (P).
Câu 2:
Bản vẽ thiết kế của một công trình được vẽ trong một hệ trục tọa độ Oxyz. Sàn nhà của công trình thuộc mặt phẳng Oxy, đường ống thoát nước thẳng và đi qua hai điểm A(1; 2; −1) và B(5; 6; −2). Tính góc tạo bởi đường ống thoát nước và mặt sàn.
Câu 3:
Từ mặt nước trong một bể nước, tại ba vị trí đôi một cách nhau 2 m, người ta lần lượt thả dây dọi để quả dọi chạm đáy bể. Phần dây dọi (thẳng) nằm trong nước tại ba vị trí đó lần lượt có độ dài 4 m; 4,4 m; 4,8 m. Biết đáy bể là phẳng. Hỏi đáy bể nghiêng so với mặt phẳng nằm ngang một góc bao nhiêu độ?
Câu 4:
Trong không gian Oxyz, cho hai đường thẳng d: và d': . Viết phương trình mặt phẳng (P) chứa đường thẳng d và song song với đường thẳng d'.
Câu 5:
Trong không gian Oxyz, cho ba điểm A(1; 0; −1), B(0; 1; 2), C(−1; −2; 3).
a) Viết phương trình mặt phẳng (ABC).
b) Viết phương trình đường thẳng AC.
c) Viết phương trình mặt cầu đường kính AC.
Câu 6:
Trong không gian Oxyz, cho mặt cầu (S): x2 + y2 + z2 – 2x + 4y + 2z – 3 = 0. Tọa độ tâm I và bán kính R của mặt cầu (S) lần lượt là
A. I(1; −2; −1), R = 3.
B. I(1; 2; 1), R = 9.
C. I(1; 2; 1), R = 3.
D. I(1; −2; −1), R = 9.
Câu 7:
Trong không gian Oxyz, cho mặt phẳng (P): x – 2y + 2z – 1 = 0 và hai điểm A(1; −1; 2), B(−1; 1; 0).
a) Tính khoảng cách từ A đến mặt phẳng (P).
b) Viết phương trình mặt phẳng (Q) đi qua A và song song với mặt phẳng (P).
c) Viết phương trình mặt phẳng (R) chứa A, B và vuông góc với mặt phẳng (P).
về câu hỏi!