Câu hỏi:
11/07/2024 5,176
Trong không gian Oxyz, cho điểm A(1; 0; 2) và hai đường thẳng d: \(\frac{x}{1} = \frac{{y - 1}}{2} = \frac{z}{2}\), \(d':\frac{{x + 1}}{2} = \frac{{y + 2}}{2} = \frac{{z - 3}}{{ - 1}}\).
a) Xét vị trí tương đối của hai đường thẳng d và d'.
b) Viết phương trình đường thẳng D đi qua A và song song với đường thẳng d.
c) Viết phương trình mặt phẳng (P) chứa A và d.
d) Tìm giao điểm của đường thẳng d với mặt phẳng (Oxz).
Trong không gian Oxyz, cho điểm A(1; 0; 2) và hai đường thẳng d: \(\frac{x}{1} = \frac{{y - 1}}{2} = \frac{z}{2}\), \(d':\frac{{x + 1}}{2} = \frac{{y + 2}}{2} = \frac{{z - 3}}{{ - 1}}\).
a) Xét vị trí tương đối của hai đường thẳng d và d'.
b) Viết phương trình đường thẳng D đi qua A và song song với đường thẳng d.
c) Viết phương trình mặt phẳng (P) chứa A và d.
d) Tìm giao điểm của đường thẳng d với mặt phẳng (Oxz).
Câu hỏi trong đề: Giải SGK Toán 12 KNTT Bài tập cuối chương 5 có đáp án !!
Quảng cáo
Trả lời:
a) Đường thẳng d đi qua điểm M(0; 1; 0) và có một vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {1;2;2} \right)\).
Đường thẳng d' đi qua điển N(−1; −2; 3) và có một vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( {2;2; - 1} \right)\).
Có \(\overrightarrow {MN} = \left( { - 1; - 3;3} \right)\), \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( { - 6;5; - 2} \right) \ne \overrightarrow 0 \).
Có \(\overrightarrow {MN} .\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = 6 - 15 - 6 = - 15 \ne 0\).
Suy ra d và d' chéo nhau.
b) Vì D // d nên đường thẳng D nhận \(\overrightarrow {{u_1}} = \left( {1;2;2} \right)\) làm một vectơ chỉ phương.
Đường thẳng D đi qua A(1; 0; 2) và nhận \(\overrightarrow {{u_1}} = \left( {1;2;2} \right)\) làm một vectơ chỉ phương có phương trình là \(\left\{ \begin{array}{l}x = 1 + t\\y = 2t\\z = 2 + 2t\end{array} \right.\).
c) Có \(\overrightarrow {AM} = \left( { - 1;1; - 2} \right)\), \(\left[ {\overrightarrow {AM} ,\overrightarrow {{u_1}} } \right] = \left( {6;0; - 3} \right)\).
Mặt phẳng (P) đi qua A(1; 0; 2) và nhận \(\overrightarrow n = \frac{1}{3}\left[ {\overrightarrow {AM} ,\overrightarrow {{u_1}} } \right] = \left( {2;0; - 1} \right)\) làm một vectơ pháp tuyến có phương trình là: 2(x – 1) – (z – 2) = 0 hay 2x – z = 0.
d) Mặt phẳng (Oxz) có phương trình là: y = 0.
Tọa độ giao điểm của đường thẳng d với mặt phẳng (Oxz) là nghiệm của hệ:
\(\left\{ \begin{array}{l}\frac{x}{1} = \frac{{y - 1}}{2} = \frac{z}{2}\\y = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = - \frac{1}{2}\\y = 0\\z = - 1\end{array} \right.\).
Vậy giao điểm cần tìm có tọa độ là \(\left( { - \frac{1}{2};0; - 1} \right)\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi 3 điểm ở trên mặt nước lần lượt là A, B, C và ba điểm tương ứng ở đáy bể là A', B', C' sao cho AA' = 4 m, BB' = 4,4 m, CC' = 4,8 m.
Chọn hệ trục tọa độ như hình vẽ, O là trung điểm của AC.
Ta có A(0; 1; 0), \(B\left( {\sqrt 3 ;0;0} \right)\), C(0; −1; 0), \(A'(0;1;4)\), \(B'\left( {\sqrt 3 ;0;4,4} \right)\), C'(0; −1; 4,8).
Ta có \(\overrightarrow {A'B'} = \left( {\sqrt 3 ; - 1;0,4} \right)\), \(\overrightarrow {A'C'} = \left( {0; - 2;0,8} \right)\).
Có \(\left[ {\overrightarrow {A'B'} ,\overrightarrow {A'C'} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&{0,4}\\{ - 2}&{0,8}\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{0,4}&{\sqrt 3 }\\{0,8}&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{\sqrt 3 }&{ - 1}\\0&{ - 2}\end{array}} \right|} \right)\) \( = \left( {0; - 0,8\sqrt 3 ; - 2\sqrt 3 } \right)\).
Mặt phẳng đáy bể là mặt phẳng (A'B'C') có một vectơ pháp tuyến là \(\overrightarrow n = \left( {0; - 0,8\sqrt 3 ; - 2\sqrt 3 } \right)\).
Mặt phẳng nằm ngang (mặt nước) chính là mặt phẳng Oxy: z = 0 có một vectơ pháp tuyến là \(\overrightarrow k = \left( {0;0;1} \right)\).
Do đó \(\cos \left( {\left( {A'B'C'} \right),\left( {Oxy} \right)} \right) = \frac{{\left| {0.0 - 0,8\sqrt 3 .0 - 2\sqrt 3 .1} \right|}}{{\sqrt {{0^2} + {{\left( { - 0,8\sqrt 3 } \right)}^2} + {{\left( { - 2\sqrt 3 } \right)}^2}} .\sqrt 1 }} = \frac{{2\sqrt 3 }}{{\frac{{2\sqrt {87} }}{5}}} = \frac{{5\sqrt {29} }}{{29}}\).
Suy ra ((A'B'C'), (Oxy)) ≈ 21,8°.
Vậy đáy bể nghiêng so với mặt phẳng nằm ngang một góc khoảng 21,8°.
Lời giải
Đường thẳng d đi qua A(−1; 1; 0) và có một vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( {1;2; - 1} \right)\).
Đường thẳng d' có một vectơ chỉ phương là \(\overrightarrow {{u_2}} = \left( {1;1;2} \right)\).
Có \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {5; - 3; - 1} \right)\).
Mặt phẳng (P) đi qua A(−1; 1; 0) và nhận \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {5; - 3; - 1} \right)\) làm một vectơ pháp tuyến có phương trình là: 5(x + 1) – 3(y – 1) – z = 0 hay 5x – 3y – z + 8 = 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.