Câu hỏi:

13/07/2024 2,548

Các kĩ sư đảm bảo an toàn của đường cao tốc thường sử dụng công thức d = 0,05v2 + 1,1v để ước tính khoảng cách an toàn tối thiểu d (feet) (tức là độ dài quãng đường mà xe đi được kể từ khi đạp phanh đến khi xe dừng lại) đối với một phương tiện di chuyển với tốc độ v (dặm/giờ) (theo Algebra 2, NXB McGraw-Hill, 2008). Giả sử giới hạn tốc độ trên một đường cao tốc nào đó là 70 dặm/giờ. Nếu một ô tô có thể dừng lại sau 300 feet kể từ khi đạp phanh thì ô tô đó có chạy nhanh hơn giới hạn tốc độ của đường cao tốc này không?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ô tô có thể dừng lại sau 300 feet kể từ khi đạp phanh nên d = 300 (feet).

Thay d = 300 vào công thức d = 0,05v2 + 1,1v, ta được:

300 = 0,05v2 + 1,1v

0,05v2 + 1,1v – 300 = 0.

Ta có ∆ = 1,12 – 4.0,05.(–300) = 61,21 > 0.

Do đó, phương trình có hai nghiệm phân biệt:

   (dặm/giờ) < 70 (dặm/giờ) (thỏa mãn);

   (không thỏa mãn).

Vậy nếu ô tô có thể dừng lại sau 300 feet kể từ khi đạp phanh thì ô tô đó không chạy nhanh hơn giới hạn tốc độ của đường cao tốc này.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi xlãi suất năm của hình thức gửi tiết kiệm này (x viết dưới dạng số thập phân, x > 0).

Sau một năm, bác Hương nhận được số tiền cả vốn lẫn lãi là:

100 + 100x (triệu đồng).

Bác Hương gửi thêm 50 triệu đồng nên năm thứ hai bác gửi số tiền là:

100 + 100x + 50 = 150 + 100x (triệu đồng).

Đến cuối năm thứ hai bác Hương nhận được số tiền lãi là:

(150 + 100x).x (triệu đồng).

Sau hai năm (kể từ khi gửi lần đầu), số tiền bác Hương nhận được cả vốn lẫn lãi là:

150 + 100x + (150 + 100x).x = 150 + 250x + 100x2 (triệu đồng).

Theo bài, sau hai năm bác Hương nhận được số tiền cả vốn lẫn lãi là 176 triệu đồng nên ta có phương trình:

150 + 250x + 100x2 = 176

100x2 + 250x – 26 = 0

50x2 + 125x – 13 = 0.

Ta có ∆ = 1252 – 4.50.(–13) = 18 225 > 0 và

Suy ra, phương trình trên có hai nghiệm phân biệt:

(thỏa mãn); (loại).

Vậy lãi suất năm của hình thức gửi tiết kiệm này là 0,1 = 10%.

Lời giải

Đổi 1 giờ 12 phút = 1,2 giờ.

Gọi thời gian học sinh khối lớp 9 làm riêng xong công việc là x (giờ) (x > 0).

Thời gian học sinh khối lớp 8 làm riêng xong công việc là x + 1 (giờ).

Một giờ khối lớp 9 làm được (công việc).

Một giờ khối lớp 8 làm được (công việc).

Một giờ cả hai khối làm được (công việc).

Khi đó, ta có phương trình:

Quy đồng mẫu hai vế của phương trình, ta được:

Nhân cả hai vế của phương trình với 6x(x + 1) để khử mẫu, ta được phương trình:

6(x + 1) + 6x = 5x(x + 1)

6x + 6 + 6x = 5x2 + 5x

5x2 – 7x – 6 = 0.

Ta có ∆ = (–7)2 – 4.5.(–6) = 169 và

Suy ra, phương trình trên có hai nghiệm phân biệt:

(thỏa mãn); (loại).

Vậy thời gian học sinh khối lớp 9 làm riêng xong công việc là 2 giờ, thời gian học sinh khối lớp 8 làm riêng xong công việc là 2 + 1 = 3 giờ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay