Cho tam giác ABC nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC. Chứng minh rằng 
Cho tam giác ABC nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC. Chứng minh rằng ![]()
Quảng cáo
Trả lời:

Ta có OA = OB (cùng bằng bán kính đường tròn ngoại tiếp (O) của ∆ABC) nên ∆OAC cân tại O, do đó
(tính chất tam giác cân).
Lại có
(tổng ba góc của một tam giác)
Suy ra ![]()
Nên
Gọi K là giao điểm của AH và BC. Khi đó AK là đường cao của tam giac ABC.
Xét ∆ABK vuông tại K có:
(tổng hai góc nhọn của tam giác vuông)
Suy ra
hay ![]()
Mặt khác, xét đường tròn (O) có
lần lượt là góc nội tiếp và góc ở tâm cùng chắn cung AC nên 
Từ (2) và (3) ta có 
Từ (1) và (4) ta có ![]()
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi độ dài các cạnh phía bên trong của khung gỗ là a (cm).
Bán kính của chiếc đồng hồ hình tròn là: r = 30 : 2 = 15 (cm).
Vì khung gỗ hình tam giác đều để đặt vừa khít chiếc đồng hồ nên đường tròn khung viền của đồng hồ nội tiếp tam giác chứa cạnh của khung gỗ và bán kính đường tròn này là 
Suy ra
suy ra ![]()
Vậy độ dài cạnh của tam giác (phía bên trong) của khung gỗ là ![]()
Lời giải

Xét ∆ABC có:
⦁ AB2 + AC2 = 42 + 32 = 25;
⦁ BC2 = 52 = 25.
Do đó AB2 + AC2 = BC2.
Suy ra tam giác ABC vuông tại A (định lí Pythagore đảo).
Theo kết quả của Hoạt động 3, trang 73, SGK Toán 9, Tập 2, ta có tâm đường tròn ngoại tiếp ∆ABC là trung điểm M của BC và bán kính của đường tròn ngoại tiếp ∆ABC là 
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


