Quảng cáo
Trả lời:

Đáp án đúng là: B
Ta có \(\int\limits_0^2 {\left| {{x^2} - x} \right|dx} \)\( = \int\limits_0^1 {\left| {{x^2} - x} \right|dx} + \int\limits_1^2 {\left| {{x^2} - x} \right|dx} \)\( = \int\limits_0^1 {\left( {x - {x^2}} \right)dx} + \int\limits_1^2 {\left( {{x^2} - x} \right)dx} \)
\( = \left. {\left( {\frac{{{x^2}}}{2} - \frac{{{x^3}}}{3}} \right)} \right|_0^1 + \left. {\left( {\frac{{{x^3}}}{3} - \frac{{{x^2}}}{2}} \right)} \right|_1^2\)\( = \frac{1}{6} + \frac{2}{3} + \frac{1}{6} = 1\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Diện tích của mặt cắt là: \(S\left( x \right) = \pi {\left( {10 + \sqrt x } \right)^2}\).
Dung tích của chậu là:
\(V = \int\limits_0^{16} {S\left( x \right)dx} = \pi \int\limits_0^{16} {{{\left( {10 + \sqrt x } \right)}^2}dx} \) \( = \pi \int\limits_0^{16} {\left( {100 + 20\sqrt x + x} \right)dx} \)
\( = \pi \left. {\left( {100x + \frac{{40}}{3}{x^{\frac{3}{2}}} + \frac{{{x^2}}}{2}} \right)} \right|_0^{16}\)\( = \frac{{7744}}{3}\pi \).
Lời giải
Diện tích mặt cắt là: \(S\left( x \right) = \left( {9 - {x^2}} \right)\) (m2).
Thể tích của lều là: \(V = \int\limits_0^3 {\left( {9 - {x^2}} \right)dx} \)\( = \left. {\left( {9x - \frac{{{x^3}}}{3}} \right)} \right|_0^3\)= 18.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.