Câu hỏi:

13/07/2024 3,917

Tính đạo hàm của Fx=lnx+x2+1 . Từ đó suy ra nguyên hàm của fx=1x2+1 .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(F'\left( x \right) = {\left[ {\ln \left( {x + \sqrt {{x^2} + 1} } \right)} \right]^\prime }\)\( = \frac{{{{\left( {x + \sqrt {{x^2} + 1} } \right)}^\prime }}}{{x + \sqrt {{x^2} + 1} }}\)\( = \frac{{1 + \frac{{{{\left( {{x^2} + 1} \right)}^\prime }}}{{2\sqrt {{x^2} + 1} }}}}{{x + \sqrt {{x^2} + 1} }}\)\( = \frac{{1 + \frac{x}{{\sqrt {{x^2} + 1} }}}}{{x + \sqrt {{x^2} + 1} }}\)

\( = \frac{{\sqrt {{x^2} + 1} + x}}{{\sqrt {{x^2} + 1} \left( {x + \sqrt {{x^2} + 1} } \right)}} = \frac{1}{{\sqrt {{x^2} + 1} }}\).

Do đó \(\int {f\left( x \right)} = \int {\frac{1}{{\sqrt {{x^2} + 1} }}} = \ln \left( {x + \sqrt {{x^2} + 1} } \right) + C\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Diện tích của mặt cắt là: \(S\left( x \right) = \pi {\left( {10 + \sqrt x } \right)^2}\).

Dung tích của chậu là:

\(V = \int\limits_0^{16} {S\left( x \right)dx} = \pi \int\limits_0^{16} {{{\left( {10 + \sqrt x } \right)}^2}dx} \) \( = \pi \int\limits_0^{16} {\left( {100 + 20\sqrt x + x} \right)dx} \)

\( = \pi \left. {\left( {100x + \frac{{40}}{3}{x^{\frac{3}{2}}} + \frac{{{x^2}}}{2}} \right)} \right|_0^{16}\)\( = \frac{{7744}}{3}\pi \).

Lời giải

Diện tích mặt cắt là: \(S\left( x \right) = \left( {9 - {x^2}} \right)\) (m2).

Thể tích của lều là: \(V = \int\limits_0^3 {\left( {9 - {x^2}} \right)dx} \)\( = \left. {\left( {9x - \frac{{{x^3}}}{3}} \right)} \right|_0^3\)= 18.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP