Câu hỏi:

13/07/2024 414

Ta đã biết trong mặt phẳng Oxy, phương trình tham số của đường thẳng có dạng: x=x0+a1ty=y0+a2ta12+a220,t.

Trong không gian Oxyz, phương trình tham số của đường thẳng có dạng như thế nào?

Ta đã biết trong mặt phẳng Oxy, phương trình tham số của đường thẳng có dạng:  (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Sau khi học xong bài này, ta biết được:

Trong không gian Oxyz, phương trình tham số của đường thẳng d đi qua điểm M0(x0; y0; z0) và nhận \(\overrightarrow a = \left( {{a_1};{a_2};{a_3}} \right)\) làm vectơ chỉ phương có dạng: \(\left\{ \begin{array}{l}x = {x_0} + {a_1}t\\y = {y_0} + {a_2}t\\z = {z_0} + {a_3}t\end{array} \right.\) với t Î ℝ (t được gọi là tham số).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đường thẳng d và d' lần lượt có vectơ chỉ phương là \(\overrightarrow a = \left( {1;0;0} \right),\overrightarrow {a'} = \left( {0;0;3} \right)\).

Ta có \(\overrightarrow a .\overrightarrow {a'} \) = 1.0 + 0.0 + 0.3 = 0.

Do đó d và d' vuông góc với nhau.

Lời giải

a) Đường thẳng a đi qua M(1; 2; 0) và có vectơ chỉ phương là \(\overrightarrow a = \left( {0;0;3} \right)\).

Đường thẳng b đi qua N(1; 2; 6) và có vectơ chỉ phương \(\overrightarrow {a'} = \left( {4;2;0} \right)\).

\(\overrightarrow a .\overrightarrow {a'} = 0.4 + 0.2 + 3.0 = 0\). Suy ra a ^ b.

Ta xét hệ \(\left\{ \begin{array}{l}1 = 1 + 4t'\\2 = 2 + 2t'\\3t = 6\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}t' = 0\\t' = 0\\t = 2\end{array} \right.\) . Suy ra hệ có nghiệm duy nhất.

Do đó a và b cắt nhau.

b) Thay t = 2 vào phương trình đường thẳng a ta được \(\left\{ \begin{array}{l}x = 1\\y = 2\\z = 6\end{array} \right.\).

Vậy tọa độ giao điểm của hai đường thẳng này là (1; 2; 6).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP