Câu hỏi:
07/07/2024 260Xét vị trí tương đối giữa hai đường thẳng d và d' trong mỗi trường hợp sau.
a) \(d:\left\{ \begin{array}{l}x = 2t\\y = 1 - t\\z = 2 - 3t\end{array} \right.\) và \[d':\frac{{x - 2}}{4} = \frac{y}{7} = \frac{{z + 1}}{{11}}\];
b) \(d:\frac{{x - 4}}{1} = \frac{{y - 1}}{2} = \frac{{z - 1}}{2}\) và \(d':\frac{{x - 2}}{3} = \frac{{y - 1}}{2} = \frac{{z - 1}}{9}\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Đường thẳng d và d' lần lượt có vectơ chỉ phương là \(\overrightarrow {{a_1}} = \left( {2; - 1; - 3} \right)\), \(\overrightarrow {{a_2}} = \left( {4;7;11} \right)\).
Ta có \(\frac{2}{4} \ne \frac{{ - 1}}{7}\) nên \(\overrightarrow {{a_1}} ,\overrightarrow {{a_2}} \) không cùng phương nên d và d' chéo nhau hoặc cắt nhau.
Xét phương trình d' ở dạng tham số \(\left\{ \begin{array}{l}x = 2 + 4t'\\y = 7t'\\z = - 1 + 11t'\end{array} \right.\).
Xét hệ phương trình \[\left\{ \begin{array}{l}2 + 4t' = 2t\\7t' = 1 - t\\ - 1 + 11t' = 2 - 3t\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}4t' - 2t = - 2\\7t' + t = 1\\11t' + 3t = 3\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}t' = 0\\t = 1\\11.0 + 3.1 = 3\end{array} \right.\].
Suy ra hệ có nghiệm duy nhất.
Do đó d và d' cắt nhau.
b) Đường thẳng d và d' lần lượt có vectơ chỉ phương là \(\overrightarrow {{a_1}} = \left( {1;2;2} \right)\), \(\overrightarrow {{a_2}} = \left( {3;2;9} \right)\).
Ta có \(\frac{1}{3} \ne \frac{2}{2}\) do đó \(\overrightarrow {{a_1}} ,\overrightarrow {{a_2}} \) không cùng phương nên d và d' chéo nhau hoặc cắt nhau.
Ta có phương trình đường thẳng d và d' viết dưới dạng tham số lần lượt là:
\(d:\left\{ \begin{array}{l}x = 4 + t\\y = 1 + 2t\\z = 1 + 2t\end{array} \right.\) và \(d':\left\{ \begin{array}{l}x = 2 + 3t'\\y = 1 + 2t'\\z = 1 + 9t'\end{array} \right.\).
Ta có hệ phương trình \(\left\{ \begin{array}{l}4 + t = 2 + 3t'\\1 + 2t = 1 + 2t'\\1 + 2t = 1 + 9t'\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}t - 3t' = - 2\\2t - 2t' = 0\\2t - 9t' = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}t = 1\\t' = 1\\2.1 - 9.1 = 0\end{array} \right.\) (vô nghiệm).
Suy ra hệ vô nghiệm. Do đó d và d' chéo nhau.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian Oxyz, cho hình lăng trụ tam giác ABC.A'B'C' với A(1; 2; 1), B(7; 5; 3), C(4; 2; 0), A'(4; 9; 9). Tìm tọa độ một vectơ chỉ phương của mỗi đường thẳng AB, A'C' và BB'.
Câu 2:
Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.A'B'C'D'. Cho biết A(0; 0; 0), B(1; 0; 0), D(0; 5; 0), A'(0; 0; 3). Tính góc giữa:
a) hai đường thẳng AC và BA';
b) hai mặt phẳng (BB'D'D) và (AA'C'C);
c) đường thẳng AC' và mặt phẳng (A'BD).
Câu 3:
Trong trò chơi mô phỏng bắn súng 3D trong không gian Oxyz, một xạ thủ đang ngắm với tọa độ khe ngắm và đầu ruồi lần lượt là là M(3; 3; 1,5), N(3; 4; 1,5). Viết phương trình tham số của đường ngắm bắn của xạ thủ (xem như đường thẳng MN).
Câu 4:
Trong không gian Oxyz, cho hình lăng trụ đứng OBC.O'B'C' có đáy là tam giác OBC vuông tại O. Cho biết B(3; 0; 0), C(0; 1; 0), O'(0; 0; 2). Tính góc giữa:
a) hai đường thẳng BO' và B'C;
b) hai mặt phẳng (O'BC) và (OBC);
c) đường thẳng B'C và mặt phẳng (O'BC)
Câu 5:
Một phần mềm mô phỏng vận động viên đang tập bắn súng trong không gian Oxyz. Cho biết trục d của nòng súng và cọc đỡ bia d' có phương trình lần lượt là:
\(d:\left\{ \begin{array}{l}x = t\\y = 20\\z = 9\end{array} \right.\) và \(d':\left\{ \begin{array}{l}x = 10\\y = 20\\z = 1 + 3t'\end{array} \right.\). Xét vị trí tương đối giữa d và d', chúng có vuông góc với nhau không?
Câu 6:
Trên phần mềm mô phỏng 3D một máy khoan trong không gian Oxyz, cho biết phương trình trục a của mũi khoan và một đường rãnh b trên vật cần khoan (Hình 18) lần lượt là: \(a:\left\{ \begin{array}{l}x = 1\\y = 2\\z = 3t\end{array} \right.\) và \(b:\left\{ \begin{array}{l}x = 1 + 4t'\\y = 2 + 2t'\\z = 6\end{array} \right.\).
a) Chứng minh a, b vuông góc và cắt nhau.
b) Tìm giao điểm của a và b.
Câu 7:
Viết phương trình tham số của đường thẳng d đi qua điểm A(1; 0; 1) và song song với đường thẳng d': \(\frac{{x + 1}}{3} = \frac{{y - 1}}{2} = \frac{{z - 1}}{4}\).
về câu hỏi!