Câu hỏi:
07/07/2024 1,715
Xét vị trí tương đối giữa hai đường thẳng d và d' trong mỗi trường hợp sau.
a) \(d:\left\{ \begin{array}{l}x = 2t\\y = 1 - t\\z = 2 - 3t\end{array} \right.\) và \[d':\frac{{x - 2}}{4} = \frac{y}{7} = \frac{{z + 1}}{{11}}\];
b) \(d:\frac{{x - 4}}{1} = \frac{{y - 1}}{2} = \frac{{z - 1}}{2}\) và \(d':\frac{{x - 2}}{3} = \frac{{y - 1}}{2} = \frac{{z - 1}}{9}\).
Xét vị trí tương đối giữa hai đường thẳng d và d' trong mỗi trường hợp sau.
a) \(d:\left\{ \begin{array}{l}x = 2t\\y = 1 - t\\z = 2 - 3t\end{array} \right.\) và \[d':\frac{{x - 2}}{4} = \frac{y}{7} = \frac{{z + 1}}{{11}}\];
b) \(d:\frac{{x - 4}}{1} = \frac{{y - 1}}{2} = \frac{{z - 1}}{2}\) và \(d':\frac{{x - 2}}{3} = \frac{{y - 1}}{2} = \frac{{z - 1}}{9}\).
Quảng cáo
Trả lời:
a) Đường thẳng d và d' lần lượt có vectơ chỉ phương là \(\overrightarrow {{a_1}} = \left( {2; - 1; - 3} \right)\), \(\overrightarrow {{a_2}} = \left( {4;7;11} \right)\).
Ta có \(\frac{2}{4} \ne \frac{{ - 1}}{7}\) nên \(\overrightarrow {{a_1}} ,\overrightarrow {{a_2}} \) không cùng phương nên d và d' chéo nhau hoặc cắt nhau.
Xét phương trình d' ở dạng tham số \(\left\{ \begin{array}{l}x = 2 + 4t'\\y = 7t'\\z = - 1 + 11t'\end{array} \right.\).
Xét hệ phương trình \[\left\{ \begin{array}{l}2 + 4t' = 2t\\7t' = 1 - t\\ - 1 + 11t' = 2 - 3t\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}4t' - 2t = - 2\\7t' + t = 1\\11t' + 3t = 3\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}t' = 0\\t = 1\\11.0 + 3.1 = 3\end{array} \right.\].
Suy ra hệ có nghiệm duy nhất.
Do đó d và d' cắt nhau.
b) Đường thẳng d và d' lần lượt có vectơ chỉ phương là \(\overrightarrow {{a_1}} = \left( {1;2;2} \right)\), \(\overrightarrow {{a_2}} = \left( {3;2;9} \right)\).
Ta có \(\frac{1}{3} \ne \frac{2}{2}\) do đó \(\overrightarrow {{a_1}} ,\overrightarrow {{a_2}} \) không cùng phương nên d và d' chéo nhau hoặc cắt nhau.
Ta có phương trình đường thẳng d và d' viết dưới dạng tham số lần lượt là:
\(d:\left\{ \begin{array}{l}x = 4 + t\\y = 1 + 2t\\z = 1 + 2t\end{array} \right.\) và \(d':\left\{ \begin{array}{l}x = 2 + 3t'\\y = 1 + 2t'\\z = 1 + 9t'\end{array} \right.\).
Ta có hệ phương trình \(\left\{ \begin{array}{l}4 + t = 2 + 3t'\\1 + 2t = 1 + 2t'\\1 + 2t = 1 + 9t'\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}t - 3t' = - 2\\2t - 2t' = 0\\2t - 9t' = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}t = 1\\t' = 1\\2.1 - 9.1 = 0\end{array} \right.\) (vô nghiệm).
Suy ra hệ vô nghiệm. Do đó d và d' chéo nhau.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đường thẳng d và d' lần lượt có vectơ chỉ phương là \(\overrightarrow a = \left( {1;0;0} \right),\overrightarrow {a'} = \left( {0;0;3} \right)\).
Ta có \(\overrightarrow a .\overrightarrow {a'} \) = 1.0 + 0.0 + 0.3 = 0.
Do đó d và d' vuông góc với nhau.
Lời giải
a) Đường thẳng a đi qua M(1; 2; 0) và có vectơ chỉ phương là \(\overrightarrow a = \left( {0;0;3} \right)\).
Đường thẳng b đi qua N(1; 2; 6) và có vectơ chỉ phương \(\overrightarrow {a'} = \left( {4;2;0} \right)\).
Có \(\overrightarrow a .\overrightarrow {a'} = 0.4 + 0.2 + 3.0 = 0\). Suy ra a ^ b.
Ta xét hệ \(\left\{ \begin{array}{l}1 = 1 + 4t'\\2 = 2 + 2t'\\3t = 6\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}t' = 0\\t' = 0\\t = 2\end{array} \right.\) . Suy ra hệ có nghiệm duy nhất.
Do đó a và b cắt nhau.
b) Thay t = 2 vào phương trình đường thẳng a ta được \(\left\{ \begin{array}{l}x = 1\\y = 2\\z = 6\end{array} \right.\).
Vậy tọa độ giao điểm của hai đường thẳng này là (1; 2; 6).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.