Câu hỏi:
07/07/2024 895
Tính góc giữa hai đường thẳng d và d' trong mỗi trường hợp sau:
a) \(d:\frac{{x - 7}}{3} = \frac{y}{5} = \frac{{z - 11}}{4}\) và \(d':\frac{{x - 3}}{2} = \frac{{y + 6}}{5} = \frac{{z - 1}}{{ - 4}}\);
b) \(d:\frac{{x + 9}}{3} = \frac{{y + 4}}{6} = \frac{{z + 1}}{6}\) và \(d':\left\{ \begin{array}{l}x = 9 - 10t\\y = 7 - 10t\\z = 15 + 5t\end{array} \right.\);
c) \(d:\left\{ \begin{array}{l}x = 23 + 2t\\y = 57 + t\\z = 19 - 5t\end{array} \right.\) và \(d':\left\{ \begin{array}{l}x = 24 + t'\\y = 6 + t'\\z = t'\end{array} \right.\).
Tính góc giữa hai đường thẳng d và d' trong mỗi trường hợp sau:
a) \(d:\frac{{x - 7}}{3} = \frac{y}{5} = \frac{{z - 11}}{4}\) và \(d':\frac{{x - 3}}{2} = \frac{{y + 6}}{5} = \frac{{z - 1}}{{ - 4}}\);
b) \(d:\frac{{x + 9}}{3} = \frac{{y + 4}}{6} = \frac{{z + 1}}{6}\) và \(d':\left\{ \begin{array}{l}x = 9 - 10t\\y = 7 - 10t\\z = 15 + 5t\end{array} \right.\);
c) \(d:\left\{ \begin{array}{l}x = 23 + 2t\\y = 57 + t\\z = 19 - 5t\end{array} \right.\) và \(d':\left\{ \begin{array}{l}x = 24 + t'\\y = 6 + t'\\z = t'\end{array} \right.\).
Quảng cáo
Trả lời:
a) Đường thẳng d và d' có vectơ chỉ phương lần lượt là \(\overrightarrow a = \left( {3;5;4} \right),\overrightarrow {a'} = \left( {2;5; - 4} \right)\).
Ta có \(\cos \left( {d,d'} \right) = \frac{{\left| {3.2 + 5.5 + 4.\left( { - 4} \right)} \right|}}{{\sqrt {{3^2} + {5^2} + {4^2}} .\sqrt {{2^2} + {5^2} + {{\left( { - 4} \right)}^2}} }} = \frac{{15}}{{15\sqrt {10} }} = \frac{1}{{\sqrt {10} }}\).
Suy ra (d, d') ≈ 71,57°.
b) Đường thẳng d và d' có vectơ chỉ phương lần lượt là \(\overrightarrow a = \left( {3;6;6} \right),\overrightarrow {a'} = \left( { - 10; - 10;5} \right)\).
Ta có \(\cos \left( {d,d'} \right) = \frac{{\left| {3.\left( { - 10} \right) + 6.\left( { - 10} \right) + 6.5} \right|}}{{\sqrt {{3^2} + {6^2} + {6^2}} .\sqrt {{{\left( { - 10} \right)}^2} + {{\left( { - 10} \right)}^2} + {5^2}} }} = \frac{{60}}{{135}} = \frac{4}{9}\).
Suy ra (d, d') ≈ 63,61°.
c) Đường thẳng d và d' có vectơ chỉ phương lần lượt là \(\overrightarrow a = \left( {2;1; - 5} \right),\overrightarrow {a'} = \left( {1;1;1} \right)\).
Ta có \(\cos \left( {d,d'} \right) = \frac{{\left| {2.1 + 1.1 + \left( { - 5} \right).1} \right|}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 5} \right)}^2}} .\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{2}{{3\sqrt {10} }}\).
Suy ra (d, d') ≈ 77,83°.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đường thẳng d và d' lần lượt có vectơ chỉ phương là \(\overrightarrow a = \left( {1;0;0} \right),\overrightarrow {a'} = \left( {0;0;3} \right)\).
Ta có \(\overrightarrow a .\overrightarrow {a'} \) = 1.0 + 0.0 + 0.3 = 0.
Do đó d và d' vuông góc với nhau.
Lời giải
a) Đường thẳng a đi qua M(1; 2; 0) và có vectơ chỉ phương là \(\overrightarrow a = \left( {0;0;3} \right)\).
Đường thẳng b đi qua N(1; 2; 6) và có vectơ chỉ phương \(\overrightarrow {a'} = \left( {4;2;0} \right)\).
Có \(\overrightarrow a .\overrightarrow {a'} = 0.4 + 0.2 + 3.0 = 0\). Suy ra a ^ b.
Ta xét hệ \(\left\{ \begin{array}{l}1 = 1 + 4t'\\2 = 2 + 2t'\\3t = 6\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}t' = 0\\t' = 0\\t = 2\end{array} \right.\) . Suy ra hệ có nghiệm duy nhất.
Do đó a và b cắt nhau.
b) Thay t = 2 vào phương trình đường thẳng a ta được \(\left\{ \begin{array}{l}x = 1\\y = 2\\z = 6\end{array} \right.\).
Vậy tọa độ giao điểm của hai đường thẳng này là (1; 2; 6).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.