Câu hỏi:

07/07/2024 880

Tính góc giữa hai đường thẳng d và d' trong mỗi trường hợp sau:

a) \(d:\frac{{x - 7}}{3} = \frac{y}{5} = \frac{{z - 11}}{4}\)\(d':\frac{{x - 3}}{2} = \frac{{y + 6}}{5} = \frac{{z - 1}}{{ - 4}}\);

b) \(d:\frac{{x + 9}}{3} = \frac{{y + 4}}{6} = \frac{{z + 1}}{6}\)\(d':\left\{ \begin{array}{l}x = 9 - 10t\\y = 7 - 10t\\z = 15 + 5t\end{array} \right.\);

c) \(d:\left\{ \begin{array}{l}x = 23 + 2t\\y = 57 + t\\z = 19 - 5t\end{array} \right.\)\(d':\left\{ \begin{array}{l}x = 24 + t'\\y = 6 + t'\\z = t'\end{array} \right.\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đường thẳng d và d' có vectơ chỉ phương lần lượt là \(\overrightarrow a = \left( {3;5;4} \right),\overrightarrow {a'} = \left( {2;5; - 4} \right)\).

Ta có \(\cos \left( {d,d'} \right) = \frac{{\left| {3.2 + 5.5 + 4.\left( { - 4} \right)} \right|}}{{\sqrt {{3^2} + {5^2} + {4^2}} .\sqrt {{2^2} + {5^2} + {{\left( { - 4} \right)}^2}} }} = \frac{{15}}{{15\sqrt {10} }} = \frac{1}{{\sqrt {10} }}\).

Suy ra (d, d') ≈ 71,57°.

b) Đường thẳng d và d' có vectơ chỉ phương lần lượt là \(\overrightarrow a = \left( {3;6;6} \right),\overrightarrow {a'} = \left( { - 10; - 10;5} \right)\).

Ta có \(\cos \left( {d,d'} \right) = \frac{{\left| {3.\left( { - 10} \right) + 6.\left( { - 10} \right) + 6.5} \right|}}{{\sqrt {{3^2} + {6^2} + {6^2}} .\sqrt {{{\left( { - 10} \right)}^2} + {{\left( { - 10} \right)}^2} + {5^2}} }} = \frac{{60}}{{135}} = \frac{4}{9}\).

Suy ra (d, d') ≈ 63,61°.

c) Đường thẳng d và d' có vectơ chỉ phương lần lượt là \(\overrightarrow a = \left( {2;1; - 5} \right),\overrightarrow {a'} = \left( {1;1;1} \right)\).

Ta có \(\cos \left( {d,d'} \right) = \frac{{\left| {2.1 + 1.1 + \left( { - 5} \right).1} \right|}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 5} \right)}^2}} .\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{2}{{3\sqrt {10} }}\).

Suy ra (d, d') ≈ 77,83°.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đường thẳng d và d' lần lượt có vectơ chỉ phương là \(\overrightarrow a = \left( {1;0;0} \right),\overrightarrow {a'} = \left( {0;0;3} \right)\).

Ta có \(\overrightarrow a .\overrightarrow {a'} \) = 1.0 + 0.0 + 0.3 = 0.

Do đó d và d' vuông góc với nhau.

Lời giải

a) Đường thẳng a đi qua M(1; 2; 0) và có vectơ chỉ phương là \(\overrightarrow a = \left( {0;0;3} \right)\).

Đường thẳng b đi qua N(1; 2; 6) và có vectơ chỉ phương \(\overrightarrow {a'} = \left( {4;2;0} \right)\).

\(\overrightarrow a .\overrightarrow {a'} = 0.4 + 0.2 + 3.0 = 0\). Suy ra a ^ b.

Ta xét hệ \(\left\{ \begin{array}{l}1 = 1 + 4t'\\2 = 2 + 2t'\\3t = 6\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}t' = 0\\t' = 0\\t = 2\end{array} \right.\) . Suy ra hệ có nghiệm duy nhất.

Do đó a và b cắt nhau.

b) Thay t = 2 vào phương trình đường thẳng a ta được \(\left\{ \begin{array}{l}x = 1\\y = 2\\z = 6\end{array} \right.\).

Vậy tọa độ giao điểm của hai đường thẳng này là (1; 2; 6).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay