Câu hỏi:
07/07/2024 150Tính góc giữa hai đường thẳng d và d' trong mỗi trường hợp sau:
a) \(d:\frac{{x - 7}}{3} = \frac{y}{5} = \frac{{z - 11}}{4}\) và \(d':\frac{{x - 3}}{2} = \frac{{y + 6}}{5} = \frac{{z - 1}}{{ - 4}}\);
b) \(d:\frac{{x + 9}}{3} = \frac{{y + 4}}{6} = \frac{{z + 1}}{6}\) và \(d':\left\{ \begin{array}{l}x = 9 - 10t\\y = 7 - 10t\\z = 15 + 5t\end{array} \right.\);
c) \(d:\left\{ \begin{array}{l}x = 23 + 2t\\y = 57 + t\\z = 19 - 5t\end{array} \right.\) và \(d':\left\{ \begin{array}{l}x = 24 + t'\\y = 6 + t'\\z = t'\end{array} \right.\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Đường thẳng d và d' có vectơ chỉ phương lần lượt là \(\overrightarrow a = \left( {3;5;4} \right),\overrightarrow {a'} = \left( {2;5; - 4} \right)\).
Ta có \(\cos \left( {d,d'} \right) = \frac{{\left| {3.2 + 5.5 + 4.\left( { - 4} \right)} \right|}}{{\sqrt {{3^2} + {5^2} + {4^2}} .\sqrt {{2^2} + {5^2} + {{\left( { - 4} \right)}^2}} }} = \frac{{15}}{{15\sqrt {10} }} = \frac{1}{{\sqrt {10} }}\).
Suy ra (d, d') ≈ 71,57°.
b) Đường thẳng d và d' có vectơ chỉ phương lần lượt là \(\overrightarrow a = \left( {3;6;6} \right),\overrightarrow {a'} = \left( { - 10; - 10;5} \right)\).
Ta có \(\cos \left( {d,d'} \right) = \frac{{\left| {3.\left( { - 10} \right) + 6.\left( { - 10} \right) + 6.5} \right|}}{{\sqrt {{3^2} + {6^2} + {6^2}} .\sqrt {{{\left( { - 10} \right)}^2} + {{\left( { - 10} \right)}^2} + {5^2}} }} = \frac{{60}}{{135}} = \frac{4}{9}\).
Suy ra (d, d') ≈ 63,61°.
c) Đường thẳng d và d' có vectơ chỉ phương lần lượt là \(\overrightarrow a = \left( {2;1; - 5} \right),\overrightarrow {a'} = \left( {1;1;1} \right)\).
Ta có \(\cos \left( {d,d'} \right) = \frac{{\left| {2.1 + 1.1 + \left( { - 5} \right).1} \right|}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 5} \right)}^2}} .\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{2}{{3\sqrt {10} }}\).
Suy ra (d, d') ≈ 77,83°.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian Oxyz, cho hình lăng trụ tam giác ABC.A'B'C' với A(1; 2; 1), B(7; 5; 3), C(4; 2; 0), A'(4; 9; 9). Tìm tọa độ một vectơ chỉ phương của mỗi đường thẳng AB, A'C' và BB'.
Câu 2:
Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.A'B'C'D'. Cho biết A(0; 0; 0), B(1; 0; 0), D(0; 5; 0), A'(0; 0; 3). Tính góc giữa:
a) hai đường thẳng AC và BA';
b) hai mặt phẳng (BB'D'D) và (AA'C'C);
c) đường thẳng AC' và mặt phẳng (A'BD).
Câu 3:
Trong trò chơi mô phỏng bắn súng 3D trong không gian Oxyz, một xạ thủ đang ngắm với tọa độ khe ngắm và đầu ruồi lần lượt là là M(3; 3; 1,5), N(3; 4; 1,5). Viết phương trình tham số của đường ngắm bắn của xạ thủ (xem như đường thẳng MN).
Câu 4:
Trong không gian Oxyz, cho hình lăng trụ đứng OBC.O'B'C' có đáy là tam giác OBC vuông tại O. Cho biết B(3; 0; 0), C(0; 1; 0), O'(0; 0; 2). Tính góc giữa:
a) hai đường thẳng BO' và B'C;
b) hai mặt phẳng (O'BC) và (OBC);
c) đường thẳng B'C và mặt phẳng (O'BC)
Câu 5:
Một phần mềm mô phỏng vận động viên đang tập bắn súng trong không gian Oxyz. Cho biết trục d của nòng súng và cọc đỡ bia d' có phương trình lần lượt là:
\(d:\left\{ \begin{array}{l}x = t\\y = 20\\z = 9\end{array} \right.\) và \(d':\left\{ \begin{array}{l}x = 10\\y = 20\\z = 1 + 3t'\end{array} \right.\). Xét vị trí tương đối giữa d và d', chúng có vuông góc với nhau không?
Câu 6:
Trên phần mềm mô phỏng 3D một máy khoan trong không gian Oxyz, cho biết phương trình trục a của mũi khoan và một đường rãnh b trên vật cần khoan (Hình 18) lần lượt là: \(a:\left\{ \begin{array}{l}x = 1\\y = 2\\z = 3t\end{array} \right.\) và \(b:\left\{ \begin{array}{l}x = 1 + 4t'\\y = 2 + 2t'\\z = 6\end{array} \right.\).
a) Chứng minh a, b vuông góc và cắt nhau.
b) Tìm giao điểm của a và b.
Câu 7:
Viết phương trình tham số của đường thẳng d đi qua điểm A(1; 0; 1) và song song với đường thẳng d': \(\frac{{x + 1}}{3} = \frac{{y - 1}}{2} = \frac{{z - 1}}{4}\).
về câu hỏi!