Câu hỏi:

07/07/2024 158

Tính góc giữa đường thẳng d và mặt phẳng (P) trong mỗi trường hợp sau:

a) \(d:\left\{ \begin{array}{l}x = 11 + 3t\\y = - 11 + t\\z = - 21 - 2t\end{array} \right.\) và (P): 6x + 2y – 4z + 7 = 0;

b) \(d:\frac{{x - 3}}{2} = \frac{{y + 4}}{4} = \frac{{z - 5}}{2}\) và (P): 2x + 2y – 4z + 1 = 0;

c) \(d:\frac{{x + 3}}{4} = \frac{{y + 5}}{4} = \frac{{z + 11}}{2}\) và (P): 2y – 4z + 7 = 0.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đường thẳng d có vectơ chỉ phương là \(\overrightarrow a = \left( {3;1; - 2} \right)\).

Mặt phẳng (P) có vectơ pháp tuyến là \(\overrightarrow n = \left( {6;2; - 4} \right)\).

Khi đó \(\sin \left( {d,\left( P \right)} \right) = \frac{{\left| {3.6 + 1.2 + \left( { - 2} \right).\left( { - 4} \right)} \right|}}{{\sqrt {{3^2} + {1^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{6^2} + {2^2} + {{\left( { - 4} \right)}^2}} }} = \frac{{28}}{{28}} = 1\).

Suy ra (d, (P)) = 90°.

b) Đường thẳng d có vectơ chỉ phương là \(\overrightarrow a = \left( {2;4;2} \right)\).

Mặt phẳng (P) có vectơ pháp tuyến là \(\overrightarrow n = \left( {2;2; - 4} \right)\).

Khi đó \(\sin \left( {d,\left( P \right)} \right) = \frac{{\left| {2.2 + 4.2 + 2.\left( { - 4} \right)} \right|}}{{\sqrt {{2^2} + {4^2} + {2^2}} .\sqrt {{2^2} + {2^2} + {{\left( { - 4} \right)}^2}} }} = \frac{4}{{24}} = \frac{1}{6}\).

Suy ra (d, (P)) ≈ 9,59°.

c) Đường thẳng d có vectơ chỉ phương là \(\overrightarrow a = \left( {4;4;2} \right)\).

Mặt phẳng (P) có vectơ pháp tuyến là \(\overrightarrow n = \left( {0;2; - 4} \right)\).

Khi đó \(\sin \left( {d,\left( P \right)} \right) = \frac{{\left| {4.0 + 4.2 + 2.\left( { - 4} \right)} \right|}}{{\sqrt {{4^2} + {4^2} + {2^2}} .\sqrt {{2^2} + {{\left( { - 4} \right)}^2}} }} = 0\).

Suy ra (d, (P)) = 0°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, cho hình lăng trụ tam giác ABC.A'B'C' với A(1; 2; 1), B(7; 5; 3), C(4; 2; 0), A'(4; 9; 9). Tìm tọa độ một vectơ chỉ phương của mỗi đường thẳng AB, A'C' và BB'.

Xem đáp án » 13/07/2024 4,813

Câu 2:

Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.A'B'C'D'. Cho biết A(0; 0; 0), B(1; 0; 0), D(0; 5; 0), A'(0; 0; 3). Tính góc giữa:

a) hai đường thẳng AC và BA';

b) hai mặt phẳng (BB'D'D) và (AA'C'C);

c) đường thẳng AC' và mặt phẳng (A'BD).

Xem đáp án » 11/07/2024 1,203

Câu 3:

Một phần mềm mô phỏng vận động viên đang tập bắn súng trong không gian Oxyz. Cho biết trục d của nòng súng và cọc đỡ bia d' có phương trình lần lượt là:

\(d:\left\{ \begin{array}{l}x = t\\y = 20\\z = 9\end{array} \right.\) \(d':\left\{ \begin{array}{l}x = 10\\y = 20\\z = 1 + 3t'\end{array} \right.\). Xét vị trí tương đối giữa d và d', chúng có vuông góc với nhau không?

Một phần mềm mô phỏng vận động viên đang tập bắn súng trong không gian Oxyz. Cho biết trục d của nòng súng và cọc đỡ bia d' có phương trình lần lượt là: (ảnh 1)

Xem đáp án » 07/07/2024 922

Câu 4:

Trong trò chơi mô phỏng bắn súng 3D trong không gian Oxyz, một xạ thủ đang ngắm với tọa độ khe ngắm và đầu ruồi lần lượt là là M(3; 3; 1,5), N(3; 4; 1,5). Viết phương trình tham số của đường ngắm bắn của xạ thủ (xem như đường thẳng MN).

Trong trò chơi mô phỏng bắn súng 3D trong không gian Oxyz, một xạ thủ đang ngắm với tọa độ khe ngắm và đầu ruồi lần lượt là là M(3; 3; 1,5), N(3; 4; 1,5). Viết phương trình tham số của đường ngắm bắn của xạ thủ (xem như đường thẳng MN).   (ảnh 1)

Xem đáp án » 07/07/2024 856

Câu 5:

Trong không gian Oxyz, cho hình lăng trụ đứng OBC.O'B'C' có đáy là tam giác OBC vuông tại O. Cho biết B(3; 0; 0), C(0; 1; 0), O'(0; 0; 2). Tính góc giữa:

a) hai đường thẳng BO' và B'C;

b) hai mặt phẳng (O'BC) và (OBC);

c) đường thẳng B'C và mặt phẳng (O'BC)

Xem đáp án » 11/07/2024 806

Câu 6:

Trên phần mềm mô phỏng 3D một máy khoan trong không gian Oxyz, cho biết phương trình trục a của mũi khoan và một đường rãnh b trên vật cần khoan (Hình 18) lần lượt là: \(a:\left\{ \begin{array}{l}x = 1\\y = 2\\z = 3t\end{array} \right.\)\(b:\left\{ \begin{array}{l}x = 1 + 4t'\\y = 2 + 2t'\\z = 6\end{array} \right.\).

a) Chứng minh a, b vuông góc và cắt nhau.

b) Tìm giao điểm của a và b.

Trên phần mềm mô phỏng 3D một máy khoan trong không gian Oxyz, cho biết phương trình trục a của mũi khoan và một  (ảnh 1)

Xem đáp án » 11/07/2024 731

Câu 7:

Trên một cánh đồng điện mặt trời, người ta đã thiết lập sẵn một hệ tọa độ Oxyz. Hai tấm pin năng lượng lần lượt nằm trong hai mặt phẳng (P): 2x + 2z + 1 = 0 và (P'): x + z + 7 = 0.

a) Tính góc giữa (P) và (P').

b) Tính góc hợp bởi (P) và (P') với mặt đất (Q) có phương trình z = 0.

Trên một cánh đồng điện mặt trời, người ta đã thiết lập sẵn một hệ tọa độ Oxyz. Hai tấm pin năng lượng lần lượt nằm trong hai mặt phẳng (P): 2x + 2z + 1 = 0 và (P'): x + z + 7 = 0. (ảnh 1)

Xem đáp án » 11/07/2024 457

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store