Cho hai mặt phẳng (P) và (P') có vectơ pháp tuyến lần lượt là \(\overrightarrow n = \left( {{n_1};{n_2};{n_3}} \right),\overrightarrow {n'} = \left( {{{n'}_1};{{n'}_2};{{n'}_3}} \right)\) (Hình 14).
Gọi d và d' là hai đường thẳng lần lượt vuông góc với (P) và (P'). Góc giữa hai mặt phẳng (P) và (P') là góc giữa hai đường thẳng d và d'. So sánh cos((P), (P')) và \(\cos \left( {\overrightarrow n ,\overrightarrow {n'} } \right)\).
                                    
                                                                                                                        Cho hai mặt phẳng (P) và (P') có vectơ pháp tuyến lần lượt là \(\overrightarrow n = \left( {{n_1};{n_2};{n_3}} \right),\overrightarrow {n'} = \left( {{{n'}_1};{{n'}_2};{{n'}_3}} \right)\) (Hình 14).
Gọi d và d' là hai đường thẳng lần lượt vuông góc với (P) và (P'). Góc giữa hai mặt phẳng (P) và (P') là góc giữa hai đường thẳng d và d'. So sánh cos((P), (P')) và \(\cos \left( {\overrightarrow n ,\overrightarrow {n'} } \right)\).

Quảng cáo
Trả lời:
Ta có \(\overrightarrow n ,\overrightarrow {n'} \) lần lượt là vectơ chỉ phương của d và d'.
Có \(\cos \left( {\left( P \right),\left( {P'} \right)} \right) = \cos (d,d') = \left| {\cos \left( {\overrightarrow n ,\overrightarrow {n'} } \right)} \right|\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
 - 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
 - Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
 - Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
 
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đường thẳng d và d' lần lượt có vectơ chỉ phương là \(\overrightarrow a = \left( {1;0;0} \right),\overrightarrow {a'} = \left( {0;0;3} \right)\).
Ta có \(\overrightarrow a .\overrightarrow {a'} \) = 1.0 + 0.0 + 0.3 = 0.
Do đó d và d' vuông góc với nhau.
Lời giải
a) Đường thẳng a đi qua M(1; 2; 0) và có vectơ chỉ phương là \(\overrightarrow a = \left( {0;0;3} \right)\).
Đường thẳng b đi qua N(1; 2; 6) và có vectơ chỉ phương \(\overrightarrow {a'} = \left( {4;2;0} \right)\).
Có \(\overrightarrow a .\overrightarrow {a'} = 0.4 + 0.2 + 3.0 = 0\). Suy ra a ^ b.
Ta xét hệ \(\left\{ \begin{array}{l}1 = 1 + 4t'\\2 = 2 + 2t'\\3t = 6\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}t' = 0\\t' = 0\\t = 2\end{array} \right.\) . Suy ra hệ có nghiệm duy nhất.
Do đó a và b cắt nhau.
b) Thay t = 2 vào phương trình đường thẳng a ta được \(\left\{ \begin{array}{l}x = 1\\y = 2\\z = 6\end{array} \right.\).
Vậy tọa độ giao điểm của hai đường thẳng này là (1; 2; 6).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



