Câu hỏi:

11/07/2024 1,789

Tính góc giữa hai mặt phẳng (P) và (P') trong mỗi trường hợp sau:

a) (P): 3x + 7y – z + 4 = 0 và (P'): x + y – 10z + 2025 = 0;

b) (P): x – 2y + z + 9 = 0 và (P'): 3x + y – 5z + 2024 = 0;

c) (P): x + z + 3 = 0 và (P'): 3y + 3z + 5 = 0.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Mặt phẳng (P) và (P') có vectơ pháp tuyến lần lượt là \(\overrightarrow n = \left( {3;7; - 1} \right),\overrightarrow {n'} = \left( {1;1; - 10} \right)\).

\(\cos \left( {\left( P \right),\left( {P'} \right)} \right) = \frac{{\left| {3.1 + 7.1 + \left( { - 1} \right).\left( { - 10} \right)} \right|}}{{\sqrt {{3^2} + {7^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {1^2} + {{\left( { - 10} \right)}^2}} }} = \frac{{20}}{{\sqrt {59} .\sqrt {102} }}\).

Suy ra ((P), (P')) ≈ 75,06°.

b) Mặt phẳng (P) và (P') có vectơ pháp tuyến lần lượt là \(\overrightarrow n = \left( {1; - 2;1} \right),\overrightarrow {n'} = \left( {3;1; - 5} \right)\).

\(\cos \left( {\left( P \right),\left( {P'} \right)} \right) = \frac{{\left| {1.3 + \left( { - 2} \right).1 + 1.\left( { - 5} \right)} \right|}}{{\sqrt {1 + {{\left( { - 2} \right)}^2} + {1^2}} .\sqrt {{3^2} + {1^2} + {{\left( { - 5} \right)}^2}} }} = \frac{4}{{\sqrt {210} }}\).

Suy ra ((P), (P')) ≈ 73,98°.

c) Mặt phẳng (P) và (P') có vectơ pháp tuyến lần lượt là \(\overrightarrow n = \left( {1;0;1} \right),\overrightarrow {n'} = \left( {0;3;3} \right)\).

\(\cos \left( {\left( P \right),\left( {P'} \right)} \right) = \frac{{\left| {1.0 + 0.3 + 1.3} \right|}}{{\sqrt {{1^2} + {1^2}} .\sqrt {{3^2} + {3^2}} }} = \frac{3}{{\sqrt {36} }} = \frac{1}{2}\).

Suy ra ((P), (P')) = 60°.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đường thẳng d và d' lần lượt có vectơ chỉ phương là \(\overrightarrow a = \left( {1;0;0} \right),\overrightarrow {a'} = \left( {0;0;3} \right)\).

Ta có \(\overrightarrow a .\overrightarrow {a'} \) = 1.0 + 0.0 + 0.3 = 0.

Do đó d và d' vuông góc với nhau.

Lời giải

a) Đường thẳng a đi qua M(1; 2; 0) và có vectơ chỉ phương là \(\overrightarrow a = \left( {0;0;3} \right)\).

Đường thẳng b đi qua N(1; 2; 6) và có vectơ chỉ phương \(\overrightarrow {a'} = \left( {4;2;0} \right)\).

\(\overrightarrow a .\overrightarrow {a'} = 0.4 + 0.2 + 3.0 = 0\). Suy ra a ^ b.

Ta xét hệ \(\left\{ \begin{array}{l}1 = 1 + 4t'\\2 = 2 + 2t'\\3t = 6\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}t' = 0\\t' = 0\\t = 2\end{array} \right.\) . Suy ra hệ có nghiệm duy nhất.

Do đó a và b cắt nhau.

b) Thay t = 2 vào phương trình đường thẳng a ta được \(\left\{ \begin{array}{l}x = 1\\y = 2\\z = 6\end{array} \right.\).

Vậy tọa độ giao điểm của hai đường thẳng này là (1; 2; 6).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay