Câu hỏi:
11/07/2024 230Tính góc giữa hai mặt phẳng (P) và (P') trong mỗi trường hợp sau:
a) (P): 3x + 7y – z + 4 = 0 và (P'): x + y – 10z + 2025 = 0;
b) (P): x – 2y + z + 9 = 0 và (P'): 3x + y – 5z + 2024 = 0;
c) (P): x + z + 3 = 0 và (P'): 3y + 3z + 5 = 0.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Mặt phẳng (P) và (P') có vectơ pháp tuyến lần lượt là \(\overrightarrow n = \left( {3;7; - 1} \right),\overrightarrow {n'} = \left( {1;1; - 10} \right)\).
\(\cos \left( {\left( P \right),\left( {P'} \right)} \right) = \frac{{\left| {3.1 + 7.1 + \left( { - 1} \right).\left( { - 10} \right)} \right|}}{{\sqrt {{3^2} + {7^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {1^2} + {{\left( { - 10} \right)}^2}} }} = \frac{{20}}{{\sqrt {59} .\sqrt {102} }}\).
Suy ra ((P), (P')) ≈ 75,06°.
b) Mặt phẳng (P) và (P') có vectơ pháp tuyến lần lượt là \(\overrightarrow n = \left( {1; - 2;1} \right),\overrightarrow {n'} = \left( {3;1; - 5} \right)\).
\(\cos \left( {\left( P \right),\left( {P'} \right)} \right) = \frac{{\left| {1.3 + \left( { - 2} \right).1 + 1.\left( { - 5} \right)} \right|}}{{\sqrt {1 + {{\left( { - 2} \right)}^2} + {1^2}} .\sqrt {{3^2} + {1^2} + {{\left( { - 5} \right)}^2}} }} = \frac{4}{{\sqrt {210} }}\).
Suy ra ((P), (P')) ≈ 73,98°.
c) Mặt phẳng (P) và (P') có vectơ pháp tuyến lần lượt là \(\overrightarrow n = \left( {1;0;1} \right),\overrightarrow {n'} = \left( {0;3;3} \right)\).
\(\cos \left( {\left( P \right),\left( {P'} \right)} \right) = \frac{{\left| {1.0 + 0.3 + 1.3} \right|}}{{\sqrt {{1^2} + {1^2}} .\sqrt {{3^2} + {3^2}} }} = \frac{3}{{\sqrt {36} }} = \frac{1}{2}\).
Suy ra ((P), (P')) = 60°.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian Oxyz, cho hình lăng trụ tam giác ABC.A'B'C' với A(1; 2; 1), B(7; 5; 3), C(4; 2; 0), A'(4; 9; 9). Tìm tọa độ một vectơ chỉ phương của mỗi đường thẳng AB, A'C' và BB'.
Câu 2:
Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.A'B'C'D'. Cho biết A(0; 0; 0), B(1; 0; 0), D(0; 5; 0), A'(0; 0; 3). Tính góc giữa:
a) hai đường thẳng AC và BA';
b) hai mặt phẳng (BB'D'D) và (AA'C'C);
c) đường thẳng AC' và mặt phẳng (A'BD).
Câu 3:
Trong trò chơi mô phỏng bắn súng 3D trong không gian Oxyz, một xạ thủ đang ngắm với tọa độ khe ngắm và đầu ruồi lần lượt là là M(3; 3; 1,5), N(3; 4; 1,5). Viết phương trình tham số của đường ngắm bắn của xạ thủ (xem như đường thẳng MN).
Câu 4:
Trong không gian Oxyz, cho hình lăng trụ đứng OBC.O'B'C' có đáy là tam giác OBC vuông tại O. Cho biết B(3; 0; 0), C(0; 1; 0), O'(0; 0; 2). Tính góc giữa:
a) hai đường thẳng BO' và B'C;
b) hai mặt phẳng (O'BC) và (OBC);
c) đường thẳng B'C và mặt phẳng (O'BC)
Câu 5:
Một phần mềm mô phỏng vận động viên đang tập bắn súng trong không gian Oxyz. Cho biết trục d của nòng súng và cọc đỡ bia d' có phương trình lần lượt là:
\(d:\left\{ \begin{array}{l}x = t\\y = 20\\z = 9\end{array} \right.\) và \(d':\left\{ \begin{array}{l}x = 10\\y = 20\\z = 1 + 3t'\end{array} \right.\). Xét vị trí tương đối giữa d và d', chúng có vuông góc với nhau không?
Câu 6:
Trên phần mềm mô phỏng 3D một máy khoan trong không gian Oxyz, cho biết phương trình trục a của mũi khoan và một đường rãnh b trên vật cần khoan (Hình 18) lần lượt là: \(a:\left\{ \begin{array}{l}x = 1\\y = 2\\z = 3t\end{array} \right.\) và \(b:\left\{ \begin{array}{l}x = 1 + 4t'\\y = 2 + 2t'\\z = 6\end{array} \right.\).
a) Chứng minh a, b vuông góc và cắt nhau.
b) Tìm giao điểm của a và b.
Câu 7:
Viết phương trình tham số của đường thẳng d đi qua điểm A(1; 0; 1) và song song với đường thẳng d': \(\frac{{x + 1}}{3} = \frac{{y - 1}}{2} = \frac{{z - 1}}{4}\).
về câu hỏi!