Câu hỏi:

11/07/2024 4,357

Để làm thí nghiệm về chuyển động trong mặt phẳng nghiêng, người làm thí nghiệm đã thiết lập sẵn một hệ tọa độ Oxyz. Tính góc giữa mặt phẳng nghiêng (P): 4x + 11z + 5 = 0 và mặt sàn (Q): z – 1 = 0.

Để làm thí nghiệm về chuyển động trong mặt phẳng nghiêng, người làm thí nghiệm đã thiết lập sẵn một hệ tọa độ Oxyz. Tính góc giữa mặt phẳng nghiêng (P): 4x + 11z + 5 = 0 và mặt sàn (Q): z – 1 = 0.   (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow n = \left( {4;0;11} \right)\).

Mặt phẳng (Q) có vectơ pháp tuyến \(\overrightarrow {n'} = \left( {0;0;1} \right)\).

\(\cos \left( {\left( P \right),\left( Q \right)} \right) = \frac{{\left| {4.0 + 0.0 + 11.1} \right|}}{{\sqrt {{4^2} + {{11}^2}} .\sqrt {{1^2}} }} = \frac{{11}}{{\sqrt {173} }}\).

Suy ra ((P), (Q)) ≈ 33,25°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đường thẳng d và d' lần lượt có vectơ chỉ phương là \(\overrightarrow a = \left( {1;0;0} \right),\overrightarrow {a'} = \left( {0;0;3} \right)\).

Ta có \(\overrightarrow a .\overrightarrow {a'} \) = 1.0 + 0.0 + 0.3 = 0.

Do đó d và d' vuông góc với nhau.

Lời giải

a) Đường thẳng a đi qua M(1; 2; 0) và có vectơ chỉ phương là \(\overrightarrow a = \left( {0;0;3} \right)\).

Đường thẳng b đi qua N(1; 2; 6) và có vectơ chỉ phương \(\overrightarrow {a'} = \left( {4;2;0} \right)\).

\(\overrightarrow a .\overrightarrow {a'} = 0.4 + 0.2 + 3.0 = 0\). Suy ra a ^ b.

Ta xét hệ \(\left\{ \begin{array}{l}1 = 1 + 4t'\\2 = 2 + 2t'\\3t = 6\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}t' = 0\\t' = 0\\t = 2\end{array} \right.\) . Suy ra hệ có nghiệm duy nhất.

Do đó a và b cắt nhau.

b) Thay t = 2 vào phương trình đường thẳng a ta được \(\left\{ \begin{array}{l}x = 1\\y = 2\\z = 6\end{array} \right.\).

Vậy tọa độ giao điểm của hai đường thẳng này là (1; 2; 6).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP