Câu hỏi:
12/07/2024 873
Đồ thị hàm số y = 4x3 – 6x2 + 1 là đường cong nào trong các đường cong sau?
A. 
B. 
C. 
D. 
Đồ thị hàm số y = 4x3 – 6x2 + 1 là đường cong nào trong các đường cong sau?
A.
B.
C.
D.
Quảng cáo
Trả lời:
Đáp án đúng là: A
Do hệ số của x3 trong hàm số đã cho là a = 4 > 0 nên đồ thị hàm số có thể là phương án A hoặc C.
Mặt khác khi thay x = 1 vào hàm số y = 4x3 – 6x2 + 1 ta được y = −1 tức là đồ thị hàm số đi qua điểm có tọa độ (1; −1).
Vậy phương án đúng là A.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Ta có: y =
Tập xác định: D = ℝ\{−1}.
Đồ thị hàm số này có đường tiệm cận đứng x = −1 nên có thể là phương án B hoặc D.
Có hệ số của x2 ở tử là a = 1 và hệ số của x ở mẫu là m = 1 nên a, m cùng dấu.
Vậy phương án đúng là B.
Lời giải
a) S |
b) Đ |
c) Đ |
d) S |
Tiệm cận đứng của đồ thị hàm số là đường thẳng x = −n nằm bên trái trục tung nên
−n < 0 hay n > 0.
Tiệm cận xiên có hệ số góc là a có hướng đi lên từ trái sang phải nên a > 0.
Đồ thị cắt trục tung tại điểm (0; ) nằm về phía trên trục hoành nên c > 0.
Đồ thị cắt trục hoành tại hai điểm có hoành độ âm nên phương trình ax2 + bx + c = 0 có hai nghiệm âm phân biệt nên < 0 hay b > 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.