Câu hỏi:
12/07/2024 1,167Quảng cáo
Trả lời:
y = (x – 2)(x + 1)2
1) Tập xác định: D = ℝ.
2) Sự biến thiên.
Giới hạn tại vô cực: y = +∞,
y = −∞.
y' = 0 khi x = ±1.
Ta có bảng biến thiên như sau:
Hàm số nghịch biến trên khoảng (−1; 1).
Hàm số đồng biến trên các khoảng (−∞; −1) và (1; +∞).
Hàm số đạt cực tiểu tại x = 1, yCT = −4; hàm số đạt cực đại tại x = −1, yCĐ = 0.
3) Đồ thị
Giao điểm của đồ thị với trục tung là (0; −2).
Đồ thị hàm số đi qua các điểm (−1; 0); (0; −2); (1; −4); (2; 0); (−2; −4).
Ta có đồ thị:
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Ta có: y =
Tập xác định: D = ℝ\{−1}.
Đồ thị hàm số này có đường tiệm cận đứng x = −1 nên có thể là phương án B hoặc D.
Có hệ số của x2 ở tử là a = 1 và hệ số của x ở mẫu là m = 1 nên a, m cùng dấu.
Vậy phương án đúng là B.
Lời giải
a) S |
b) Đ |
c) Đ |
d) S |
Tiệm cận đứng của đồ thị hàm số là đường thẳng x = −n nằm bên trái trục tung nên
−n < 0 hay n > 0.
Tiệm cận xiên có hệ số góc là a có hướng đi lên từ trái sang phải nên a > 0.
Đồ thị cắt trục tung tại điểm (0; ) nằm về phía trên trục hoành nên c > 0.
Đồ thị cắt trục hoành tại hai điểm có hoành độ âm nên phương trình ax2 + bx + c = 0 có hai nghiệm âm phân biệt nên < 0 hay b > 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.