Câu hỏi:
12/07/2024 549Quảng cáo
Trả lời:
y = (x3 – 6x2 + 12x)
hay y = x3 +
x2 – 3x.
1) Tập xác định: D = ℝ.
2) Sự biến thiên.
Giới hạn tại vô cực: y = −∞,
y = +∞.
Ta có: y' = x2 + 3x – 3 = 3(−
x2 + x − 1);
y' = 0 ⇔ −x2 + x − 1 = 0
⇔ −x2 + 4x − 4 = 0
⇔ −(x – 2)2 = 0
⇔ x = 2 (nghiệm kép).
Ta có bảng biến thiên:
Hàm số nghịch biến trên ℝ.
3) Đồ thị
Đồ thị hàm số đi qua các điểm: ; (0; 0);
; (2; −2);
; (4; −4).
Ta có đồ thị của hàm số như sau:
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Ta có: y =
Tập xác định: D = ℝ\{−1}.
Đồ thị hàm số này có đường tiệm cận đứng x = −1 nên có thể là phương án B hoặc D.
Có hệ số của x2 ở tử là a = 1 và hệ số của x ở mẫu là m = 1 nên a, m cùng dấu.
Vậy phương án đúng là B.
Lời giải
a) S |
b) Đ |
c) Đ |
d) S |
Tiệm cận đứng của đồ thị hàm số là đường thẳng x = −n nằm bên trái trục tung nên
−n < 0 hay n > 0.
Tiệm cận xiên có hệ số góc là a có hướng đi lên từ trái sang phải nên a > 0.
Đồ thị cắt trục tung tại điểm (0; ) nằm về phía trên trục hoành nên c > 0.
Đồ thị cắt trục hoành tại hai điểm có hoành độ âm nên phương trình ax2 + bx + c = 0 có hai nghiệm âm phân biệt nên < 0 hay b > 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.